Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Классификация уровней биологических структур и организация живых систем
Клетка — естественная крупинка жизни, как атом — естественная крупинка неорганизованной материи. Тейяр де Шарден Рассмотрение явлений живой природы по уровням биологических структур дает возможность изучения возникновения и эволюции живых систем на Земле от простейших и менее организованных систем к более сложным и высокоорганизованным. Первые классификации растений, наиболее известной из которой была система Карла Линнея, а также классификация животных Жоржа Бюффона носили в значительной мере искусственный характер, поскольку не учитывали происхождения и развития живых организмов. Тем не менее они способствовали объединению всего известного биологического знания, его анализу и исследованию причин и факторов происхождения и эволюции живых систем. Без такого исследования невозможно было бы, во-первых, перейти на новый уровень познания, когда объектами изучения биологов стали живые структуры сначала на клеточном, а затем на молекулярном уровне. Во-вторых, обобщение и систематизация знаний об отдельных видах и родах растений и животных требовали перехода от искусственных классификаций к естественным, где основой должен стать принцип генезиса, происхождения новых видов, а следовательно, разработана теория эволюции. В-третьих, именно описательная, эмпирическая биология послужила тем фундаментом, на основе которого сформировался целостный взгляд на многообразный, но в то же время единый мир живых систем. Уровни организации живого — объекты изучения биологии, экологии и физической географии — показаны на рис. 14.2. Представление о структурных уровнях организации живых систем сформировалось под влиянием открытия клеточной теории строения живых тел. В середине прошлого века клетка рассматривалась как элементарная единица живой материи наподобие атома неорганических тел. Проблема строения живого, изучаемого молекулярной биологией, совершила научную революцию с середины прошлого столетия. Во второй половине XX века были выяснены вещественный состав, структура клетки и процессы, происходящие в ней. Каждая клетка содержит в середине плотное образование, названное ядром, которое плавает в " полужидкой" цитоплазме. Все вместе они заключены в клеточную мембрану. Клетка нужна для аппарата воспроизводства, который находится в ее ядре. Без клетки генетический аппарат не мог бы существовать. Основное вещество клетки — белки, молекулы которых обычно содержат несколько сот аминокислот и похожи на бусы или браслеты с брелочками, состоящими из главной и боковой цепей. У всех живых видов имеются свои особые белки, определяемые генетическим аппаратом. Попадающие в организм белки расщепляются на аминокислоты, которые затем используются им для построения собственных белков. Нуклеиновые кислоты создают ферменты, управляющие реакциями. Хотя в состав белков человеческого организма входят 20 аминокислот, но совершенно обязательны для него только 9 из них. Остальные, по-видимому, вырабатываются самим организмом. Характерная особенность аминокислот, содержащихся не только в человеческом организме, но и в других живых системах (животных, растениях и даже вирусах), состоит в том, что все они являются левовращающими плоскость поляризации изомерами, хотя в принципе существуют аминокислоты и правого вращения. Дальнейшие исследования были направлены на изучение механизмов воспроизводства и наследственности в надежде обнаружить в них то специфическое, что отличает живое от неживого. Наиболее важным открытием на этом пути было выделение из состава ядра клетки богатого фосфором вещества, обладающего свойствами кислоты и названного впоследствии нуклеиновой кислотой. В дальнейшем удалось выявить углеводный компонент этих кислот, в одном из которых оказалась Д-дезоксирибоза, а в другом Р-рибоза. Соответственно этому первый тип кислот стали называть дезоксирибонуклеиновыми кислотами, или (сокращенно) ДНК, а второй тип — рибонуклеиновыми, или РНК. Роль ДНК в хранении и передаче наследственности была выяснена после того, как в 1944 г. американским микробиологам удалось доказать, что выделенная из пневмококков свободная ДНК обладает свойством передавать генетическую информацию. В 1953 г. Джеймсом Уотсоном и Френсисом Криком была предложена и экспериментально подтверждена гипотеза о строении молекулы ДНК как материального носителя информации. В 1960-е гг. французскими учеными Франсуа Жакобом и Жаком Моно была решена одна из важнейших проблем генной активности, раскрывающая фундаментальную особенность функционирования живой природы на молекулярном уровне. Они доказали, что по своей функциональной активности все гены разделяются на " регуляторные", кодирующие структуру регуляторного белка, и " структурные гены", кодирующие синтез ферментов. Воспроизводство себе подобных и наследование признаков осуществляется с помощью наследственной информации, материальным носителем которой являются молекулы дезокси-рибонуклеиновой кислоты (ДНК). ДНК состоит из двух цепей, идущих в противоположных направлениях и закрученных одна вокруг другой наподобие электрических проводов. Напоминает винтовую лестницу. Участок молекулы ДНК, служащий матрицей для синтеза одного белка, называют геном. Гены расположены в хромосомах (части ядер клеток). Было доказано, что основная функция генов состоит в кодировании синтеза белков. Механизм передачи информации от ДНК к морфологическим структурам дал известный физик-теоретик Г. Гамов, указав, что для кодирования одной аминокислоты требуется сочетание из трех нуклеотидов ДНК. Молекулярный уровень исследования позволил показать, что основным механизмом изменчивости и последующего отбора являются мутации, возникающие на молекулярно-генетическом уровне. Мутация—это частичное изменение структуры гена. Конечный эффект ее—изменение свойств белков, кодируемых му-тантными генами. Появившийся в результате мутации признак не исчезает, а накапливается. Мутации вызываются радиацией, химическими соединениями, изменением температуры, наконец, могут быть просто случайными. Действие естественного отбора проявляется на уровне живого, целостного организма. Поскольку минимальной самостоятельной живой системой можно считать клетку, постольку изучение онтогенетического уровня следует начать именно с клетки. В настоящее время различают три типа онтогенетического уровня организации живых систем, которые представляют собой три линии развития живого мира: 1) прокариоты — клетки, лишенные ядер; 2) эукариоты, появившие позднее, — клетки, содержащие ядра; 3) архебакте- рии — клетки которых сходны, с одной стороны, с прокариотами, с другой — эукариотами. По-видимому, все эти три линии развития исходят из единой первичной минимальной живой системы, которую можно назвать протоклеткой. Структурный подход к анализу первичных живых систем на онтогенетическом уровне нуждается в дополнительном освещении функциональных особенностей их жизнедеятельности и обмена веществ. Онтогенетический уровень организации относится к отдельным живым организмам — одноклеточным и многоклеточным. В разных организмах число клеток существенно отличается. В соответствии с числом клеток все живые организмы разделяют на пять царств: бактерии, водоросли, грибы, растения, животные. Первые живые организмы имели одиночные клетки, затем эволюция жизни усложнила структуру и число клеток. Одноклеточные организмы, имеющие простое строение, называются монерами (греч. moneres — простой), или бактериями. Одноклеточные организмы с более сложной структурой относят к царству водорослей, или проститов. Среди водорослей есть и простейшие многоклеточные организмы. К многоклеточным относят растения, грибы и животных. Живые организмы классифицируют в связи с их эволюционным родством, поэтому считается, что многоклеточные имели своими предками проститы, а те произошли от монер. Но три многоклеточных царства произошли от разных проститов. Каждая группа многоклеточных организмов — растений, животных и грибов — имеет свой план строения, приспособленный к своему образу жизни, а у каждого вида в процессе эволюции сложилась определенная разновидность этого достаточно гибкого плана. Почти каждый вид состоит из различающихся по строению, но в то же время кровно родственных групп индивидов. Вид представляет собой не простое собрание индивидуумов, а сложную систему группировок, соподчиненных и тесно связанных друг с другом. Известный немецкий биолог Э. Геккель открыл биогенетический закон, согласно которому онтогенез в краткой форме повторяет филогенез, т. е. отдельный организм в своем индивидуальном развитии в сокращенной форме повторяет историю рода. Популяционный уровень начинается с изучения взаимосвязи и взаимодействия между совокупностями особей одного вида, которые имеют единый генофонд и занимают единую территорию. Такие совокупности, или скорее системы живых организмов, составляют определенную популяцию. Очевидно, что популяционный уровень выходит за рамки отдельного организма, и поэтому его называют надорганизменным уровнем организации. Популяция представляет собой первый надорганизменный уровень организации живых существ, который хотя и тесно связан с их онтогенетическим и молекулярными уровнями, но качественно отличается от них по характеру взаимодействия составляющих элементов, ибо в этом взаимодействии они выступают как целостные общности организмов. По современным представлениям, именно популяции служат элементарными единицами эволюции. Второй надорганизменный уровень организации живого составляет различные системы популяций, которые называют биоценозами или сообществами. Они являются более обширными объединениями живых существ и в значительно большей мере зависят от небиологических, или абиотических, факторов развития. Третий надорганизменный уровень организации содержит в качестве элементов разные биоценозы и в еще большей степени характеризуется зависимостью от многочисленных земных и абиотических условий своего существования (географических, климатических, гидрологических, атмосферных и т. п.). Для его обозначения применяется термин биогеоценоз, или экологическая система (экосистема). Четвертый надорганизменный уровень организации возникает из объединения самых разнообразных биогеоценозов и теперь называется биосферой. Для характеристики трофического (пищевого) взаимодействия популяции и биоценозов существенное значение имеет общее правило, согласно которому, чем длиннее и сложнее пищевые связи между организмами и популяциями, тем более жизнеспособной и устойчивой является живая система любого (надорганизменного) уровня. Отсюда становится ясным, что с биологической точки зрения на таком уровне решающее значение приобретает трофический характер взаимодействия между составляющими живую систему элементами. Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 1008; Нарушение авторского права страницы