Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Активация Т-лимфоцинтов. Костимуляция. Модель двух сигналов. Анергия. Апоптоз
1. Мембранные процессы, связ. с разпозн. Т-лимф. Пептид+ГКГ Iили II. 2. Цитозольные хвосты связаны с протеинкиназами. Сигнал при расп. АГ с мембр. клетки усиливается, запускается каскад протеинкиназ, вовлекается фосфолипаза С, идет активация белкв, которые связаны с ДНК Т-лимфоцита. 3. Клетки вырабатывают ИЛ-2 под действием которого примерно через 12 часов клетки трансформируются в бласты. Пролиферация идет дальше и бласты дифференцируются в зрелые Т-лимфоцитные клетки. Анергия — полная или частичная утрата организмом специфической иммунологической реактивности (обычно в форме гиперчувствительности замедленного типа). Выявляется с помощью внутрикожных тестов на анамнестические антигены. Дает отрицательные результаты, к примеру, при ВИЧ-инфекции, у больных туберкулезом, лепрой, у онкобольных. При анергии отмечается отрицательный или сниженный пролиферативный ответ CD4+ Т-лимфоцитов на специфические антигены и митогены in vitro и in vivo. Различают центральную и периферическую анергию. Последняя выражается полной или частичной утратой способности ИКК к активации вследствие блокирования антигенспецифических рецепторов, повреждения механизмов костимуляции Апоптоз —механизм запрограммированной гибели одной клетки или группы клеток многоклеточного организма. Сигналы, запускающие механизмы апоптоза, активируют ферменты, которые вызывают фрагментацию ДНК на участки 50-300 п.н. и разрушение клетки. После этого начинаются фагоцитоз и элиминация апоптозных телец макрофагами. Признаками апоптоза являются уменьшение размеров клетки, уплотнение и фрагментация хроматина, скопление его возле ядерной мембраны, уменьшение объема цитоплазмы. При этом гибель клеток не сопровождается воспалением и повреждением тканей. Апоптоз индуцируется большинством веществ (в малых концентрациях), вызывающих некроз, а также сигналами, поступающими от регуляторных клеточных молекул (гормонов, цитокинов, антигенов, суперантигенов, моноклонштьных антител). Противоположным апоптозу процессом является некроз — повреждение нормальных тканей Вместе с 65 Методы определения количества и функциональной активности Т-лимфоцитов 1. определение Е-розеток основано на наличии на мембране Т-лимфорецепторов к эритроцитам барана При смешивании лимфоцитов крови человека и эритроцитов барана образуются " розетки" - лимфоцит с прилипшими к нему 3 и более эритроцитами 2. кожно-аллергические пробы с соответствующими антигенами или веществами, имитирующими антигены (фитогемагглютинин), которые названы мутагенами; 3. реакция бластной трансформации лимфоцитов с фитогешгглютинлном или соответствующими антигенам проявляется в превращении лимфоцитов в более крупные молодые клетки - бласты, число которых подсчитывается в препарате на 200 лимфоцитов. 4. реакция подавления миграции макрофагов или гранулоцитов под действием фактора, продуцируемого Т-лямфоцитами при взаимодействии со специфическим антигеном. Лимфоциты человека смешивают с предполагаемым антигеном, а через 18 часов в каплю полученной культуральной жидкости опускают капилляр, наполненный подвижными макрофагами или гранулоцитами и через, сутки измеряют степень их миграции из опытного и контрольного (без антигена) капилляров. Их отношение называется индексом подавления миграции. 5. определение цитотоксичности Т-киллеров выявляется при взаимодействии лимфоцитов больного с клетками-мишенями, т.е. клетками, выдавшими их образование. Подсчитывается количество погибших клеток. 67. Ответ иммунный клеточный (КИО) — сложная, многокомпонентная кооперативная реакция иммунной системмы, индуцированная чужеродным антигеном (Т-клеточными эпитопами). Реализуется Т-системой иммунитета. Этапы КИО 1. захват антигена АПК 2. Процессир. АГ в протеосомах. 3. Образование комплекса пептид+ ГКГ I и II класса. 4. Транспортировка комплемента на мембрану АПК. 5. Распознавание комплемента АГ-специфическими Т-хелперами 1 6. активация АПК и Т-хелперов 1, выделение Е-хелперами1 ИЛ-2 и гамма – интерферона. Пролиферация и дифференцировка в области АГ-зависимых Т-лимфоцитов. 7. Образование зрелых Т-лимфоцитов разных популяций и Т-лимфоцитов памяти. 8. Взаимодействие зрелых Т-лимфоцитов с АГ и реализация конечного эффектора. Проявления КИО: противоинфекционный ИО: противовирусный, противопаразитарный, противобактериальный (внутриклеточно расположенные бактерии);, аллергии IV и I типов; противоопухолевый ИО; трансплантационный ИО; иммунологическая толерантность; иммунологическая память; аутоиммунные процессы. 68. Трансплантационный иммунитет — состояние повышенной иммунной реактивности организма, возникающее в ответ на пересадку органа или ткани, взятых от другой, генетически отличающейся особи. Реакции трансплантационною иммунитета тем сильнее, чем больше выражены генетические различия между донором и реципиентом. Развитие Т. и. приводит к гибели пересаженной ткани. Состояние иммунитета при аллотрансплантации развивается в основном по типу гиперчувствительности замедленного типа. Повышенная чувствительность к пересаженной ткани возникает примерно через 1—2 нед. после трансплантации и сохраняется в течение от 1 мес. до нескольких лет. На протяжении этого периода повторная трансплантация сопровождается отторжением пересаженной ткани в более короткий срок. Сенсибилизация обусловлена в первую очередь реакцией регионарных к трансплантату лимфатических узлов, через которые происходит отток лимфы от пересаженной ткани: далее включаются другие участки лимфоидной ткани хозяина. Иммунитет при_ аллотрансплантациях не обладает органной специфичностью, реакция имеет индивидуально специфический характер. Она направлена как против той ткани, которая пересаживалась, так и против других тканей того же донора. Основным клеточным компонентом при этом является Т-популяция стимулированных лимфоцитов, хотя гуморальные факторы реципиента также принимают участие в формировании трансплантационного иммунитета. В период реакции тканевой несовместимости установлено появление в крови реципиента антител, оказывающих комплементзависимое цитотоксическое, а также агглютинирующее действие на клетки донорской антигенной принадлежности. Антитела обнаружены также в трансплантате во время его гибели Полной ясности в механизме отторжения трансплантатов еще нет. Полагают, что генетически чужеродный трансплантат отторгается в результате инфильтрации пересаженной ткани лимфоцитами — Т-киллерами, которые оказывают разрушающее действие на клетки-мишени, выделяя биологически активное вещество — лимфотоксин. Разрушение лимфоцитами усиливается при воздействии иммунных антител (антителозависимый цитолиз). В результате клеточной инфильтрации местно (в области трансплантата) достигается высокая концентрация иммунологических эффекторов, приводящая к его гибели. Иммунологическая реакция при пересадке аллогенных клеток может иметь прямо противоположную форму и исходить со стороны иммунокомпетентных клеток пересаженной ткани против организма реципиента — реакция трансплантата против хозяина (РТПХ). Эта реакция наблюдается преимущественно при трансплантации костного мозга, когда иммунная реактивность реципиента понижена. Реакции Т. и. к пересаженным тканям и РТПХ могут быть ослаблены путем подбора донора по антигенам гистосовместимости, в результате облучения организма реципиента, применения адренокортикотропных гормонов, антиметаболитов, антилимфоцитарной сыворотки, ингибирующих различные стороны обменных процессов и оказывающих иммунодепрессивное действие. Антигены главного комплекса гистосовместимости (МНС - Major histocompatibility complex). МНС у человека называются HLA (англ. Human leucocyte antigene). Молекулы гистосовместимости I и II классов кодируются генами системы гистосовместимости локусов А, В, С и D, которые располагаются в коротком плече 7 хромосомы. Они характеризуются выраженным разнообразием. Молекулы 1 класса состоят из тяжелой цепи (45 кДа) нековалентно связанной с В-2 микроглобулином (12 кДа). Они могут быть фиксированы на мембране клеток, так и обнаруживаться в сыворотке и других жидкостях организма. Тяжелая цепь молекулы состоит из 3-х внеклеточных доменов, обозначенных - al (N-терминальный), а2 и аЗ, трансмембранной области и цитоплаэматического хвоста. Они экспедированы как на иммунокомпетентных, так и на соматических клетках. Выявлено участие растворимых молекул I класса в различных этапах иммунного ответа: а) связывании антиНЬАантител; б) ингибиции цитотоксичности аутореактивных Т-лимфоцитов; с) формировании иммунологической толерантности. Молекулы II класса распознавания являются продуктами DR, DQ и DP генов, гетеродимеры тяжелой (а) и легкой (в) гликопротеидных цепей. Молекулярная масса альфа цепи 30-34 кДа, а бэта - 26-29 кда. Внеклеточная часть молекулы представлена al и а2, или в1 и в2 и соединена небольшой трансиенбранной областью (30 аминокислот) и коротким цитоплазматическин доменом (15 аминокислот). Они экспрессированы преимущественно на мембране иммунокомпетентных клеток. Антигены МНС I класса имеют все ядросодержащие клетки, а МНС II класса - только антигенпрезентирующие клетки. Антигены МНС I и II классов участвуют в презентации (представлении) клетками антигенного пептида Т-лимфоцитам: продукты МНС I класса презентируют (представляют) антигенный пептид CD8+ Т-лимфоцитам, а МНС II класса CD4+ Т-лимфоцитам. Имеются неклассические молекулы МНС, или МНС-подобные (например, CD1). Виды и механизмы реакций отторжения: раннее отторжение трансплантата Основной механизм отторжения - клеточно опосредованный. Иммунный ответ похож на таковой при туберкулиновой пробе, вызывает разрушение трансплантата в течение дней - месяцев. Гистологически характеризуется мононуклеарной клеточной инфильтрацией трансплантата, кровоизлияниями и отеком. Из - за гипоксии нередко развивается фиброз. Такой вид отторжения можно затормозить с помощью иммуносупрессоров. позднее отторжение трансплантата. Проявляется в основном у пациентов с ИДС. Патологическая картина отличается от (1.) тем, что вовлекается эндотелий сосудов, происходит его пролиферация с последующим сужением просвета сосудов, что приводит к ишемии и некрозу трансплантата. гипериммунное отторжение трансплантата Проявляется в случаях, если антигены трансплантата раньше уже попадали в организм реципиента до текущей пересадки (при беременности, переливании крови, предыдущей трансплантации). Отторжение и деструкция развиваются в течение часов и даже минут. Реакция опосредована гуморально, характеризуется тромбозом мелких сосудов, инфарктом трансплантата, лизисом клеток на границе " трансплантат - хозяин". Процесс необратим и не предотвращается ни одним из известных методов иммуносупрессии. Для предупреждения развития реакций отторжения необходимо: типирование тканей по МНС, ABO, Rh; исключить " специфическую презентацию" – предыдущее попадание антигена трансплантата в организм хозяина; проводить иммуносупрессивную терапию до приживания трансплантата. 69 Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной)индивидуальности каждого организма и вида в целом. Различают несколько основных видов иммунитета. Врожденный, иди видовой, иммунитет, он же наследственный, генетический, конституциональный — это выработанная в процессе филогенеза генетически закрепленная, передающаяся по наследству невосприимчивость данного вида и его индивидов к какому-либо антигену (или микроорганизму), обусловленная биологическими особенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия. Примером может служить невосприимчивость человека к некоторым возбудителям, в том числе к особо опасным для сельскохозяйственных животных (чума крупного рогатого скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствительность человека к бактериофагам, поражающим клетки бактерий. К генетическому иммунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом. Видовой иммунитет может быть абсолютным и относительным. Например, нечувствительные к столбнячному токсину лягушки могут реагировать на его введение, если повысить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, приобретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус. Приобретенный иммунитет — это невосприимчивость к антигену чувствительного к нему организма человека, животных и пр., приобретаемая в процессе онтогенеза в результате естественной встречи с этим антигеном организма, например, при вакцинации. Примером естественного приобретенного иммунитета у человека может служить невосприимчивость к инфекции, возникающая после перенесенного заболевания, так называемый постинфекционный иммунитет (например, после брюшного тифа, дифтерии и других инфекций), а также «проиммуниция», т. е. приобретение невосприимчивости к ряду микроорганизмов, обитающих в окружающей среде и в организме человека и постепенно воздействующих на иммунную систему своими антигенами. В отличие от приобретенного иммунитета в результате перенесенного инфекционного заболевания или «скрытной» иммунизации, на практике широко используют преднамеренную иммунизацию антигенами для создания к ним невосприимчивости организма. С этой целью применяют вакцинацию, а также введение специфических иммуноглобулинов, сывороточных препаратов или иммунокомпетентных клеток. Приобретаемый при этом иммунитет называют поствакцинальным, и служит он для защиты от возбудителей инфекционных болезней, а также других чужеродных антигенов. Приобретенный иммунитет может быть активным и пассивным. Активный иммунитет обусловлен активной реакцией, активным вовлечением в процесс иммунной системы при встрече с данным антигеном (например, поствакцинальный, постинфекционный иммунитет), а пассивный иммунитет формируется за счет введения в организм уже готовых иммунореагентов, способных обеспечить защиту от антигена. К таким иммунореагентам относятся антитела, т. е. специфические иммуноглобулины и иммунные сыворотки, а также иммунные лимфоциты. Иммуноглобулины широко используют для пассивной иммунизации, а также для специфического лечения при многих инфекциях (дифтерия, ботулизм, бешенство, корь и др.). Пассивный иммунитет у новорожденных детей создается иммуноглобулинами при плацентарной внутриутробной передаче антител от матери ребенку ииграет существенную роль в защите от многих детских инфекций в первые месяцы жизни ребенка. Поскольку в формировании иммунитета принимают участие клетки иммунной системы и гуморальные факторы, принято активный иммунитет дифференцировать в зависимости от того, какой из компонентов иммунных реакций играет ведущую роль в формировании защиты от антигена. В связи с этим различают клеточный, гуморальный, клеточно-гуморальный и гуморально-клеточ-ный иммунитет. Примером клеточного иммунитета может служить противоопухолевый, а также трансплантационный иммунитет, когда ведущую роль в иммунитете играют цитотоксические Т-лимфоциты-киллеры; иммунитет при ток-синемических инфекциях (столбняк, ботулизм, дифтерия) обусловлен в основном антителами (антитоксинами); при туберкулезе ведущую роль играют иммунокомпетентные клетки (лимфоциты, фагоциты) с участием специфических антител; при некоторых вирусных инфекциях (натуральная оспа, корь и др.) роль в защите играют специфические антитела, а также клетки иммунной системы. В инфекционной и неинфекционной патологии и иммунологии для уточнения характера иммунитета в зависимости от природы и свойств антигена пользуются также такой терминологией: антитоксический, противовирусный, противогрибковый, противобактериальный, противопротозойный, трансплантационный, противоопухолевый и другие виды иммунитета. Наконец, иммунное состояние, т. е. активный иммунитет, может поддерживаться, сохраняться либо в отсутствие, либо только в присутствии антигена в организме. В первом случае антиген играет роль пускового фактора, а иммунитет называют стерильным. Во втором случае иммунитет трактуют как нестерильный. Примером стерильного иммунитета является поствакцинальный иммунитет при введении убитых вакцин, а нестерильного— иммунитет при туберкулезе, который сохраняется только в присутствии в организме микобактерий туберкулеза. Иммунитет (резистентность к антигену) может быть системным, т. е. генерализованным, и местным, при котором наблюдается более выраженная резистентность отдельных органов и тканей, например слизистых верхних дыхательных путей (поэтому иногда его называют мукозальным). Иммунный ответ — совокупность процессов, происходящих в иммунной системе в ответ на введение антигена. Клетки, участвующие в иммунном ответе (Т- и В-лимфоциты и макрофаги), называются иммунекомпетентными. Иммунный ответ может быть: • первичным — при первой встрече с антигеном. Его выраженность достигает максимума к 7—8-му дню, сохраняется в течение 2 недель, а затем снижается; • вторичным — при повторной встрече с антигеном. Вторичный иммунный ответ развивается быстрее и достигает большей (в 3—4 раза) интенсивности. По типу взаимодействия клеток и образовавшихся клеток-эффекторов (по конечному результату) принято различать 3 типа иммунного ответа: • гуморальный иммунный ответ; • клеточный иммунный ответ; • иммунологическую толерантность. При гуморальном иммунном ответе эффекторными являются потомки В-лимфоцитов — плазматические клетки, точнее, продукты их жизнедеятельности — антитела. При клеточном иммунном ответе эффекторными клетками являются потомки Th1 — Т-киллеры. Они убивают клетки-мишени, несущие соответствующие антигены. Иммунологическая толерантность — это специфическая иммунологическая инертность, терпимость к антигену. Он распознается, но не формируются эффекторные механизмы, способные его элиминировать. Иммунный ответ любого типа проходит 2 фазы: • 1-я, непродуктивная, — распознавание антигенов и взаимодействие иммунокомпетентных клеток; • 2-я, продуктивная, — пролиферация клеток-эффекторов или продукция антител. Иммунный ответ развивается при контакте иммунной системы с любым антигеном. Иммунный ответ на антигены микробного происхождения лежит в основе инфекционного иммунитета. Инфекционный иммунитет — это способ защиты организма от микроорганизмов и их токсинов. Его основные механизмы: • гуморальный — продукция эффекторных молекул — антител; • клеточный — образование клеток-эффекторов. По своей направленности инфекционный иммунитет может быть: • антибактериальным; • антитоксическим; • противовирусным; • противогрибковым; • противопротозойным. 2. Различают несколько видов иммунитета: • врожденный — обнаруживается уже при рождении. Это генотипический признак, который передается по наследству. Если он присущ всем особям данного вида, его называют видовым, если отдельным особям данного вида — индивидуальным. Примером такого иммунитета может быть невосприимчивость человека к возбудителю чумы собак или животных к гонококку; • приобретенный — приобретаемый в течение жизни данного индивидуума. Это фенотипический признак, он не передается по наследству. Различают естественный и искусственный приобретенный иммунитет. И тот и другой может быть активным или пассивным: • естественный активный возникает после перенесенной инфекции; • естественный пассивный обеспечивается за счет антител, передаваемых от матери через плаценту или с грудным молоком; • искусственный активный — после введения вакцин или анатоксинов, на которые организм вырабатывает иммунитет; • искусственный пассивный — после введения извне готовых антител или клеток-эффекторов. Иммунитет может быть стерильным, когда организм свободен от соответствующего возбудителя, и нестерильным, при котором возбудитель соответствующего заболевания сохраняется в организме, и только при этом условии поддерживается иммунитет. Таков иммунитет при туберкулезе, сифилисе и некоторых других заболеваниях.
70. Иммунопрофилактика и иммунотерапия инфекционных болезней Достижения и проблемы. Иммунопрофилактика - метод индивидуальной или массовой защиты населения от инфекционных заболеваний путем создания или усиления искусственного иммунитета. Иммунопрофилактика бывает: 1 специфическая - против конкретного возбудителя а) активная - создание иммунитета путем введения вакцин б)пассивная - создание иммунитета путем введения сывороточных препаратов и гамма-глобулина; 2. неспецифическая - активизация иммунной системы в общем. Иммунотерапия — терапевтическо воздействие на имунную систему; лечение заболеваний или нормализация физиологических состояний путем применения иммунобиологических и химиотерапевтических препаратов и методов. Вакцины, требования к вакцинам. Виды вакцин, характеристика, методы приготовления. Новые подходы к созданию вакцин. требования к вакцинам. •Безопасность- наиболее важное свойство вакцины, тщательно исследуется и контролируется в процессе производства и применения вакцин. Вакцина является безопасной, если при введении людям не вызывает развитие серьезных осложнений и заболеваний; •Протективность - способность индуцировать специфическую защиту организма против определенного инфекционного заболевания; •Длительность сохранения протективности; •Стимуляция образования нейтрализующих антител; •Стимуляция эффекторных Т-лимфоцитов; •Длительность сохранения иммунологической памяти; •Низкая стоимость; •Биологическая стабильность при транспортировке и хранении; •Низкая реактогенность; •Простота введения. Виды вакцин: Живые вакцины изготовляют на основе ослабленных штаммов микроорганизма с генетически закрепленной авирулентностью. Вакцинный штамм, после введения, размножается в организме привитого и вызывает вакцинальный инфекционный процесс. У большинства привитых вакцинальная инфекция протекает без выраженных клинических симптомов и приводит к формированию, как правило, стойкого иммунитета. Примером живых вакцин могут служить вакцины для профилактики полиомиелита (живая вакцина Сэбина), туберкулеза (БЦЖ), эпидемического паротита, чумы, сибирской язвы, туляремии. Живые вакцины выпускаются в лиофилизированном (порошкообразном) виде (кроме полиомиелитной). Убитые вакцины представляют собой бактерии или вирусы, инактивированные химическим (формалин, спирт, фенол) или физическим (тепло, ультрафиолетовое облучение) воздействием. Примерами инактивированных вакцин являются: коклюшная (как компонент АКДС), лептоспирозная, гриппозные цельновирионные, вакцина против клещевого энцефалита, против инактивированная полиовакцина (вакцина Солка). Химические вакцины получают путем механического или химического разрушения микроорганизмов и выделения протективных, т. е. вызывающих формирование защитных иммунных реакций, антигенов. Например вакцина против брюшного тифа, вакцина против менингококковой инфекции. Анатоксины. Эти препараты представляют собой бактериальные токсины, обезвреженные воздействием формалина при повышенной температуре (400) в течение 30 дней с последующей очисткой и концентрацией. Анатоксины сорбируют на различных минеральных адсорбентах, например на гидроокиси алюминия (адъюванты). Адсорбция значительно повышает иммуногенную активность анатоксинов. Это связано как с созданием " депо" препарата в месте введения, так и с адъювантным действием сорбента, вызывающего местное воспаление, усиление плазмоцитарной реакции в регионарных лимфатических узлах Анатоксины применяют для профилактики столбняка, дифтерии, стафилокакковых инфекций. Синтетические вакцины представляют собой искусственно созданные антигенные детерминанты микроорганизмов. В состав ассоциированных вакцин входят препараты из предыдущих групп и против нескольких инфекций. Пример: АКДС - состоит из дифтерийного и столбнячного анатоксина, адсорбированных на гидроокиси алюминия и убитой коклюшной вакцины. Вакцины, полученные методами генной инженерии. Суть метода: гены вирулентного микроорганизма, отвечающий за синтез протективных антигенов, встраивают в геном какого - либо безвредного микроорганизма, который при культивировании продуцирует и накапливает соответствующий антиген. Примером может служить рекомбинантная вакцина против вирусного гепатита В, вакцина против ротавирусной инфекции. В перспективе предполагается использовать векторы, в которые встроены не только гены, контролирующие синтез антигенов возбудителя, но и гены, кодирующие различные медиаторы (белки) иммунного ответа (интерфероны, интерлейкины и т.д В настоящее время интенсивно разрабатываются вакцины из плазмидных (внеядерных) ДНК, кодирующих антигены возбудителей инфекционных заболеваний. Идея таких вакцин состоит в том, чтобы встроить гены микроорганизма, отвественные за синтез микробного белка, в геном человека. При этом клетки человека ничинают продукцию этого чужеродного для них белка, а иммунная система станет вырабатывать антитела к нему. Эти антитела и будут нейтрализовать возбудителя в случае попадания его в организм.
71 Поетвакцинальный иммунитет. Факторы, влияющие на его развитие Методы определения напряжённости поствакцинального иммунитета. Значение коллективного иммунитета, методы его оценки. Поствакцинальный иммунитет - иммунитет, который развивается после введения вакцины. На развитие поствакцинального иммунШ«ПЯрЮОТ< эдду»ОЩ)Кф|КТОры: Зависящие от самой вакцины - качество препарата, -доза, - наличие протективных антигенов, - кратность введения зависящие от организма состояние индивидуальной иммунной реагппност; возраст, наличие иммунодефицита, состояние организма в целом зависянше-от внешней среды питание, условия труда и быта, флора и фауна, физико- химические факторы среды
Методы контроля эффективности поствакцинального иммунитета Для оценки состояния искусственного поствакцинального иммунитета испольЗДОТСЯ следующие методы -постановка серологических реакций с сыворотками вакцинированных, кожные иммунологические пробы, кожно-аллергические пробы Оценка состояния иммунитета у населения производится в основном к инфекциям, управляемым, средствами специфической профилактики - коклюш, корь, паратит, дифтерия и столбняк Против этих инфекций имеются эффективные вакцины Кроме того выборочно осуществляют контроль эффективности иммунопрофилактики и состояния коллективного иммунитета к гриппу, полиомиелиту, туберкулезу, туляремии, бруцеллезу и другим инфекциям Для контроля состояния иммунитета используются доступные для массового обследования, высокоспецифичные и, вместе с тем, безвредные методы Чаще всего применяют серологический метод - постановку РПГА с сывороткой привитых Взятие сывороток производится выборочно у городских и сельских жителей разных возрастных групп (по 50 человек) Кровь берут из пальца по 1, 5 мл - 0, 75 мл сыворотки Каждая проба сы-° воротки исследуется на наличие антител к различным возбудителям Показателями оценки иммунологической защищенности являются титры антител к дифтерии и столбняку 1 20 к кори -1 4 Для выявления иммунитета к коклюшу ставится РА, защитный титр антител 1 100 Данные о серонегативных лицах, не имеющих защитного титра антител, передаются в поликлинику для разработки индивидуальных схем иммунизации Постоянно контролируется и состояние иммунитета к вирусам гриппа РТГА (реакция торможения гемогглютинации) Защитный титр антител 1 20 в PITA Проводится также выборочный контроль иммунитета к полиомиелиту-у детей, с помощью реакции нейтрализации (рН) вируса имеющими ея в сыворотке антителами на культуре клеток При титре антител 1 16 - иммунитет напряженный Для контроля иммунитета-к дифтерии в детских коллективах (по эпидемиологическим показателям или сомнительном качестве прививок), используют также иммунологическую пробу Шика - внутрикожиое введение минимальной дозы разведенного дифтерийного токсина При наличии в крови достаточного титра антител (антитоксина) введенный токсин нейтрализуется и кожная реакция отсутствует Осуществляется также контроль эффективности вакцинопрофилактики туляремии путем постановки кожно-аллергической пробы о тулярином, при отрицательной пробе-иммунитет отсутствует Постановка кожно-аллергической пробы с туберкулином позволяет выявить наличие нестерильного иммунитета к туберкулезу С 1984 года используется также новый аллерген-тетанин для постановки кожно-аллергической пробы с целью контроля состояния иммунитета к столбняку Проведение иммунологического контроля эффективности вакцинопрофилактики позволяет оценить фактическую защищенность к данной инфекции и качество прививочной работы и в необходимых случаях 72. Пассивная иммунопрофилактика - создание иммунитета путем введения сывороточных препаратов и гамма-глобулина; Сывороточные препараты - содержат готовые антитела. В зависимости от назначения они делятся на лечебно-профилактические и диагностические, от степени очистки - на сывороточные, полиглобулиновые и гамма-глобулиновые препараты, по происхождению - от животных и человеческие; последние подразделяются на донорские и плацентарные. Для изготовления сывороточных препаратов в настоящее время используют три метода: 1. Иммунизация животных с целью получения поливалентных сывороток, т.е. содержащих антитела как к специфическим, так и к групповым антигенам иммунизирующего микроба. Такие сыворотки часто дают т.н. групповые серологические реакции. Поэтому для уоиления их специфичности проводят адсорбцию из них антител к групповым антигенам: 2. Получение моноклональных антител, продуцируемых после имунизации животного отдельными плазматическими клетками, " слитыми" с клетками определенных опухолевых линий. Такая гибридома имеет объединенный геном: от плазматической клетки она наследует способность к продукции определенных антител, от опухолевой - способность к длительному размножению. Назначение гибридом - длительная продукция антител одной специфичности. 3. Получение сыворотки людей, ранее переболевших или вакцинированных и потому имеющих определенные титры антител, как правило, к возбудителям различных инфекционных болезней Сыворотки получают либо от доноров, либо из смеси плацентарной крови. В них, как правило, содержатся антитела к вирусу кори, и в разных количествах антитела к стафилококкам, стрептококкам, эшерихиям, протею, псевдомонас, возбудителям гриппа, коклюша, полиомиелита, инфекционного гепатита. Лечебно-профилактические сывороточные препараты используют для создания искусственного пассивного иммунитета при экстренной профилактике и иммунотерапии следующих заболеваний: стафилококковых инфекций - антистафилококковая человеческая плазма или антистафилококковый человеческий иммуноглобулин; коклюша - нормальный человеческий иммуноглобулин; гриппа - донорский гаммаглобулин; кори - нормальный человеческий иммуноглобулин; полиомиелита - нормальный человеческий иммуноглобулин; гепатита А - нормальный человеческий иммуноглобулин; столбняка - антитоксическая лошадиная сыворотка или (у лиц с аллергией к лошадиному белку) - провостолбнячный антитоксический человеческий иммуноглобулин (от вакцинированных доноров); раневых анаэробных инфекций - противогангренозные (антиперфрингенс А, антиэдематиено, антисептикум) лошадиные сыворотки; ботулизма -антиботулинистические А, В, С. лошадиные сыворотки; дифтерии - антитоксическая лошадиная сыворотка; бешенства - антирабический лошадиный гамма-глобулин и иммуноглобулин из сыворотки людей, вакцинированных против бешенства 73 Коллективный иммунитет – иммунитет популяции Определяется: - Числом переболевших - Числом привитых против данной инфекции - - Иммунная прослойка количество лиц (%) в популяции, - иммунных к данному заболеванию. - Чем выше этот показатель, тем выше - уровень коллективного иммунитета. - Имеет значение для: - Прогнозирования эпидпроцесса - Планирования иммунопрофилактики - Оценки качества иммунопрофилактики 74. АЛЛЕРГИЯ (от греч. аllos - другой) - форма иммунного ответа, специфическая повышенная чувствительность организма к аллергену (антигену) в результате неадекватной реакции иммунной системы на повторный контакт с аллергеном, что приводит к повреждению тканей. Популярное:
|
Последнее изменение этой страницы: 2016-07-14; Просмотров: 784; Нарушение авторского права страницы