Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Применение рядов распределения



Приведенный ряд распределения содержит три элемента: разновидность атрибутивного признака (мужчины, женщины); численность единиц в каждой группе, называемая частотами ряда распределения; численность групп, выраженная в долях (процентах) от общей численности единиц, называемая частостями. Сумма частостей равна 1, если они выражены в долях единицы, и равна 100 %, если они выражены в процентах.

Ряды, построенные по атрибутивному признаку, называют атрибутивными.

Ряды распределения, построенные по количественному признаку, называются вариационныыми рядами. Числовые значения количественного признака в вариационном ряду распределения называются вариантами и располагаются в определенной последовательности. Варианты могут выражаться числами положительными и отрицательными, абсолютными и относительными. Вариационные ряды делятся на дискретные и интервальные.

Дискретныге вариационныге рядыг характеризуют распределение единиц совокупности по дискретному (прерывному) признаку, т. е. принимающему целые значения. При построении ряда распределения с дискретной вариацией признака все варианты выписываются в порядке возрастания их величины, подсчитывается, сколько раз повторяется одна и та же величина варианта, т. е. частота, и записывается в одной строке с соответствующим значением варианта, например распределение семей по числу детей (табл. 3.5).

Частоты в дискретном вариационном ряду, как и в атрибутивном, могут быть заменены частостями.

Таблица 3.5

Применение дискретного ряда распределения

В случае непрерывной вариации величина признака может принимать любые значения в определенном интервале, например распределение работников фирмы по уровню дохода (табл. 3.6).

Таблица 3.6

Случай непрерывной вариации

При построении интервального вариационного ряда необходимо выбрать оптимальное число групп (интервалов признака) и установить длину интервала. Оптимальное число групп выбирается так, чтобы отразить многообразие значений признака в совокупности. Чаще всего число групп устанавливается по формуле

k = 1 + 3, 32lg N = 1, 44ln N + 1,

где k – число групп; N – численность совокупности.

Например, необходимо построить вариационный ряд сельскохозяйственных предприятий по урожайности зерновых культур. Число сельскохозяйственных предприятий – 143. Как определить число групп?

k = 1 + 3, 32lg N = 1 + 3, 32lg143 = 8, 16.

Число групп может быть только целым числом, в данном случае – 8 или 9.

Пример. Минимальная урожайность составляет 30 ц/га, максимальная – 70 ц/га, а число намеченных групп – 10. Величину интервала можно рассчитать по формуле (3.1):

 

Если полученная группировка не удовлетворяет требованиям анализа, то можно произвести перегруппировку. Не следует стремиться к очень большому количеству групп, так как в такой группировке часто исчезают различия между группами. Также надо избегать образования и слишком малочисленных групп, включающих несколько единиц совокупности, потому что в таких группах перестает действовать закон больших чисел и возможно проявление случайности. Когда не удается сразу наметить возможные группы, собранный материал сначала разбивают на значительное количество групп, а затем укрупняют их, уменьшая количество групп и создавая качественно однородныле группыл.

Таким образом, группировки во всех случаях должны быть построены так, чтобы образованные в них группы как можно полнее отвечали действительности, были видны различия между группами и в одну группу не объединялись существенно различающиеся между собой явления.

Статистические таблицы

После того как данные статистического наблюдения собраны и даже сгруппированы, их трудно воспринимать и анализировать без определенной, наглядной систематизации. Результаты статистических сводок и группировок получают оформление в виде статистических таблиц.

Статистическая таблица дает количественную характеристику статистической совокупности и представляет собой форму наглядного отображения полученных в результате статистической сводки и группировки числовых (цифровых) данных. По внешнему виду таблица представляет собой комбинацию вертикальных и горизонтальных строк. В ней обязательно должны быть общие боковые и верхние заголовки. Еще одной особенностью статистической таблицы является наличие подлежащего (характеристика статистической совокупности) и сказуемого (показатели, характеризующие совокупности). Статистические таблицы являются наиболее рациональной формой изложения результатов сводки или группировки.

Подлежащее таблицы представляет ту статистическую совокупность, о которой идет речь в таблице, т. е. перечень отдельных или всех единиц совокупности либо их групп. Чаще всего подлежащее помещается в левой части таблицы и содержит перечень строк. Сказуемое таблицы – это те показатели, с помощью которых дается характеристика явления, отображаемого в таблице. Подлежащее и сказуемое таблицы могут располагаться по-разному, главное, чтобы таблица была легко читаемой, компактной и легко воспринималась.

В статистической практике и исследовательских работах используются таблицы различной сложности. Это зависит от характера изучаемой совокупности, объема имеющейся информации, задач анализа. Если в подлежащем таблицы содержится простой перечень каких-либо объектов или территориальных единиц, таблица называется простой. В подлежащем простой таблицы нет каких-либо группировок статистических данных. Эти таблицы имеют самое широкое применение в статистической практике, например характеристика городов РФ по численности населения, средней зарплате и т. п. Если подлежащее простой таблицы содержит перечень территорий, например областей, краев, автономных округов, республик и т. д., то такая таблица называется территориальной. Простая таблица содержит только описательные сведения, ее аналитические возможности ограничены. Глубокий анализ исследуемой совокупности, взаимосвязей признаков предполагает построение более сложных таблиц – групповых и комбинационных.

Групповые таблицы в отличие от простых содержат в подлежащем не простой перечень единиц объекта наблюдения, а их группировку по одному существенному признаку. Простейшим видом групповой таблицы являются таблицы, в которых представлены ряды распределения (см. табл. 3.6). Групповая таблица может быть более сложной, если в сказуемом приводится не только число единиц в каждой группе, но и ряд других важных показателей, количественно и качественно характеризующих группы подлежащего. Такие таблицы часто используются в целях сопоставления обобщающих показателей по группам, что позволяет сделать определенные практические выводы. Более широкими аналитическими возможностями располагают комбинационные таблицы.

Комбинационными называются статистические таблицы, в подлежащем которых группы единиц, образованные по одному признаку, подразделяются на подгруппы по одному или нескольким признакам. В отличие от простых и групповых таблиц комбинационные позволяют проследить зависимость показателей сказуемого от нескольких признаков, которые легли в основу комбинационной группировки в подлежащем.

Наряду с перечисленными выше таблицами в статистической практике применяют таблицы сопряженности, или таблицы частот. В основе построения таких таблиц лежит группировка единиц совокупности по двум или более признакам, которые называются уровнями. Например, население делится по полу (мужской, женский) и т. п. Таким образом, признак А имеет n градаций (или уровней): A1, A2, An (в нашем примере n = 2). Далее изучается взаимодействие признака А с другим признаком – В, который подразделяется на m градаций (факторов): B1, B2, ..., Bm. В нашем примере признак В – принадлежность к какой-либо профессии, а B1, B2, Bm принимают конкретные значения (доктор, водитель, учитель, строитель и т. д.). Группировка по двум и более признакам используется для оценки взаимосвязей между признаками А и В.

Результаты наблюдений можно представить таблицей сопряженности, состоящей из n строк и m столбцов, в ячейках которых проставлены частоты событий nij, т. е. количество объектов выборки, обладающих комбинацией уровней Aj и Bj. Если между переменными A и B имеется взаимно-однозначная прямая или обратная функциональная связь, то все частоты nij концентрируются по одной из диагоналей таблицы. При не столь сильной связи некоторое число наблюдений попадает и на недиагональные элементы. В этих условиях перед исследователем стоит задача: выяснить, насколько точно можно предсказать значение одного признака по величине другого. Таблица частот называется одномерной, если в ней табулирована только одна переменная. Таблица, в основе которой лежит группировка по двум признакам (уровням), которые табулируются по двум признакам (факторам), называется таблицей с двумя входами. Таблицы частот, в которых табулируются значения двух или более признаков, называются таблицами сопряженности.

Из всех видов статистических таблиц наиболее широкое применение имеют простые таблицы, реже применяются групповые и особенно комбинационные статистические таблицы, а таблицы сопряженности строят для проведения специальных видов анализа. Статистические таблицы служат одним из важных способов выражения и изучения массовых общественных явлений, но лишь при условии правильного их построения.

Форма любой статистической таблицы должна наилучшим образом отвечать сущности выражаемого ею явления и целям его изучения. Это достигается путем соответствующей разработки подлежащего и сказуемого таблицы. Внешне таблица должна быть небольшой и компактной, иметь название, указание единиц измерения, а также времени и места, к которым относятся сведения. Заголовки строк и граф в таблице даются кратко, но четко. Чрезмерное загромождение таблицы цифровыми данными, неряшливое оформление затрудняют ее чтение и анализ. Перечислим основные правила построения статистических таблиц:

  • таблица должна быть компактной и отражать только те исходные данные, которые прямо отражают исследуемое социально-экономическое явление в статике и динамике;
  • заголовок таблицы, названия граф и строк должны быть четкими, краткими, лаконичными. В заголовке должны быть отражены объект, признак, время и место совершения события;
  • графы и строки следует нумеровать;
  • графы и строки должны содержать единицы измерения, для которых существуют общепринятые сокращения;
  • информацию, сопоставляемую в ходе анализа, лучше всего располагать в соседних графах (либо одну под другой). Это облегчает процесс сравнения;
  • для удобства чтения и работы числа в статистической таблице следует проставлять в середине граф, строго одно под другим: единицы – под единицами, запятая – под запятой;
  • числа целесообразно округлять с одинаковой степенью точности (до целого знака, до десятой доли);
  • отсутствие данных обозначается знаком умножения (х), если данная позиция не подлежит заполнению, отсутствие сведений обозначается многоточием (...), либо «н. д.», либо «н. св.», при отсутствии явления ставится знак тире (-);
  • для отображения очень малых чисел используют обозначение 0.0 или 0.00;
  • если число получено на основании условных расчетов, то его берут в скобки, сомнительные числа сопровождают вопросительным знаком, а предварительные – знаком (*).

В случае необходимости дополнительной информации статистические таблицы сопровождаются сносками и примечаниями, в которых разъясняются, например, сущность специфического показателя, примененной методологии и т. д. Сносками пользуются для того, чтобы указать на ограниченные обстоятельства, которые надо принять во внимание при чтении таблицы.

При соблюдении этих правил статистическая таблица становится основным средством представления, обработки и обобщения статистической информации о состоянии и развитии изучаемых социально-экономических явлений.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 539; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь