Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Решение системы линейных алгебраических уравнений с помощью правила Крамера.



Пусть нам требуется решить систему линейных алгебраических уравнений

в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть, .

Пусть - определитель основной матрицы системы, а - определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов:

При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как . Так находится решение системы линейных алгебраических уравнений методом Крамера.

18 Предел и непрерывность функции в точке. Свойства предела. Пределы слева и справа.

Предел функции — одно из основных понятий математического анализа. Функция f(x) имеет предел L в точке x0, если для всех значений x, достаточно близких к x0, значение f(x) близко к L.

Предел функции на бесконечности описывает поведение значения данной функции, когда её аргумент становится бесконечно большим (по абсолютной величине).

Предел функции обозначается как

или через символ предела функции:

Если при прочтении данного материала у Вас возникнут вопросы, Вы всегда можете задать их на нашем форуме, также на форуме Вам помогут решить задачи по математике, геометрии, химии, теории вероятности и многим другим предметам.

Свойства пределов функции

1) Предел постоянной величиныПредел постоянной величины равен самой постоянной величине:

2) Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Аналогично предел разности двух функций равен разности пределов этих функций.

Расширенное свойство предела суммы:

Предел суммы нескольких функций равен сумме пределов этих функций:

Аналогично предел разности нескольких функций равен разности пределов этих функций.

3) Предел произведения функции на постоянную величину

Постоянный коэффициент можно выносить за знак предела:

4) Предел произведения

Предел произведения двух функций равен произведению пределов этих функций:

Расширенное свойство предела произведения

Предел произведения нескольких функций равен произведению пределов этих функций:

5) Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

Определение непрерывности функции в точке.

Функция f(x) называется непрерывной в точке , если предел слева равен пределу справа и совпадает со значением функции в точке , то есть .

 

Следствие.

ЗНАЧЕНИЕ ПРЕДЕЛА ФУНКЦИИ В ТОЧКАХ НЕПРЕРЫВНОСТИ СОВПАДАЕТ СО ЗНАЧЕНИЕМ ФУНКЦИИ В ЭТИХ ТОЧКАХ.

Предел последовательности и функции. Теоремы о пределах

Числа и называются соответственно пределом справа и пределом слева функции f(x) в точке а. Для существования предела функции f(x) при x ® a необходимо и достаточно, чтобы. Функция f(x) называется непрерывной в точке x 0, если

. (6.15)

Условие (6.15) можно переписать в виде:

,

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.15) нарушено, то говорят, что при x = x o функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(x o )= f(0) не определено, поэтому в точке x o = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке x o, если ,

и непрерывной слева в точке x o, если .

Непрерывность функции в точке x o равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке x o, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(x o ). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если существует и не равен f(x o ), то говорят, что функция f(x) в точке x o имеет разрыв первого рода, или скачок.

2. Если равен ¥ или не существует, то говорят, что в точке x o функция имеет разрыв второго рода.

Например, функция y = ctg x при x ® +0 имеет предел, равный + ¥ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x ) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка [a, b], называется непрерывной в [a, b]. Непрерывная функция изображается сплошной кривой.

При этом операции дифференцирования и интегрирования функций времени заменяются соответствующими операциями умножения и деления функций комплексного переменного на оператор р, что существенно упрощает расчет, так как сводит систему дифференциальных уравнений к системе алгебраических. В операторном методе отпадает необходимость определения постоянных интегрирования. Этими обстоятельствами объясняется широкое применение этого метода на практике.

Физический смысл производной

 


Поделиться:



Популярное:

  1. ERP II – ERP-системы второго поколения.
  2. I. 49. Основные принципы разработки системы применения удобрений.
  3. I.12. Факторы жизни растений, возможность управления ими с помощью агротех. приёмов.
  4. II. Травматические повреждения нервной системы
  5. III. Правила исполнения обязанности по уплате налогов и сборов
  6. V2: Тема 7.5 Плащ. Центры первой и второй сигнальных систем. Функциональные системы головного мозга.
  7. XI. СОВРЕМЕННАЯ КОММУНИКАЦИЯ И ПРАВИЛА РЕЧЕВОГО ОБЩЕНИЯ
  8. Абсолютное движение - движение тела относительно условно неподвижной системы отсчета.
  9. Автоматизация ресторанов, гостиниц, кинокомплексов, баров, культурно-оздоровительных, бильярдных и боулинг центров на базе системы R-Keeper
  10. Автоматизированные системы регистрации
  11. Аксиома статики о равновесии системы двух сил. Аксиома параллелограмма сил.
  12. Анализ линии уравнений в курсе математики средней школы


Последнее изменение этой страницы: 2016-09-01; Просмотров: 466; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь