Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Решение системы линейных алгебраических уравнений с помощью правила Крамера.
Пусть нам требуется решить систему линейных алгебраических уравнений в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть, . Пусть - определитель основной матрицы системы, а - определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов: При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как . Так находится решение системы линейных алгебраических уравнений методом Крамера. 18 Предел и непрерывность функции в точке. Свойства предела. Пределы слева и справа. Предел функции — одно из основных понятий математического анализа. Функция f(x) имеет предел L в точке x0, если для всех значений x, достаточно близких к x0, значение f(x) близко к L. Предел функции на бесконечности описывает поведение значения данной функции, когда её аргумент становится бесконечно большим (по абсолютной величине). Предел функции обозначается как или через символ предела функции: Если при прочтении данного материала у Вас возникнут вопросы, Вы всегда можете задать их на нашем форуме, также на форуме Вам помогут решить задачи по математике, геометрии, химии, теории вероятности и многим другим предметам. Свойства пределов функции 1) Предел постоянной величиныПредел постоянной величины равен самой постоянной величине: 2) Предел суммы Предел суммы двух функций равен сумме пределов этих функций: Аналогично предел разности двух функций равен разности пределов этих функций. Расширенное свойство предела суммы: Предел суммы нескольких функций равен сумме пределов этих функций: Аналогично предел разности нескольких функций равен разности пределов этих функций. 3) Предел произведения функции на постоянную величину Постоянный коэффициент можно выносить за знак предела: 4) Предел произведения Предел произведения двух функций равен произведению пределов этих функций: Расширенное свойство предела произведения Предел произведения нескольких функций равен произведению пределов этих функций: 5) Предел частного Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю: Определение непрерывности функции в точке. Функция f(x) называется непрерывной в точке , если предел слева равен пределу справа и совпадает со значением функции в точке , то есть .
Следствие. ЗНАЧЕНИЕ ПРЕДЕЛА ФУНКЦИИ В ТОЧКАХ НЕПРЕРЫВНОСТИ СОВПАДАЕТ СО ЗНАЧЕНИЕМ ФУНКЦИИ В ЭТИХ ТОЧКАХ. Предел последовательности и функции. Теоремы о пределах Числа и называются соответственно пределом справа и пределом слева функции f(x) в точке а. Для существования предела функции f(x) при x ® a необходимо и достаточно, чтобы. Функция f(x) называется непрерывной в точке x 0, если . (6.15) Условие (6.15) можно переписать в виде: , то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке. Если равенство (6.15) нарушено, то говорят, что при x = x o функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(x o )= f(0) не определено, поэтому в точке x o = 0 функция имеет разрыв. Функция f(x) называется непрерывной справа в точке x o, если , и непрерывной слева в точке x o, если . Непрерывность функции в точке x o равносильна ее непрерывности в этой точке одновременно и справа и слева. Для того, чтобы функция была непрерывна в точке x o, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(x o ). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв. 1. Если существует и не равен f(x o ), то говорят, что функция f(x) в точке x o имеет разрыв первого рода, или скачок. 2. Если равен ¥ или не существует, то говорят, что в точке x o функция имеет разрыв второго рода. Например, функция y = ctg x при x ® +0 имеет предел, равный + ¥ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x ) в точках с целыми абсциссами имеет разрывы первого рода, или скачки. Функция, непрерывная в каждой точке промежутка [a, b], называется непрерывной в [a, b]. Непрерывная функция изображается сплошной кривой. При этом операции дифференцирования и интегрирования функций времени заменяются соответствующими операциями умножения и деления функций комплексного переменного на оператор р, что существенно упрощает расчет, так как сводит систему дифференциальных уравнений к системе алгебраических. В операторном методе отпадает необходимость определения постоянных интегрирования. Этими обстоятельствами объясняется широкое применение этого метода на практике. Физический смысл производной
Популярное:
|
Последнее изменение этой страницы: 2016-09-01; Просмотров: 497; Нарушение авторского права страницы