Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Кибернетический подход к описанию информационных систем
Учебные вопросы: Управление как процесс. Система управления. Этапы управления сложной системой. Представление систем в виде «черного ящика». Управление как процесс
Кибернетический подход к описанию систем состоит в том, что всякое целенаправленное поведение рассматривается как управление. Управление – в широком, кибернетическом смысле – это обобщение приемов и методов, накопленных разными науками об управлении искусственными объектами и живыми организмами. Язык управления – это использование понятий «объект», «среда», «обратная связь», «алгоритм» и т.д.
Анализ управления заставляет выделить тройку – среду, объект и субъект, внутри которой разыгрывается процесс управления (рис. 4.1). В данном случае субъект ощущает на себе воздействие среды Х и объекта У. Если состояние среды Х он изменить не может, то состоянием объекта У он может управлять с помощью специально организованного воздействия U. Это и есть управление. Состояние объекта Y влияет на состояние потребностей субъекта. Потребности субъекта где - состояние i-й потребности субъекта, которая выражается неотрицательным числом, характеризующим насущность, актуальность этой потребности. Свое поведение субъект строит так, чтобы минимизировать насущность своих потребностей, т. е. решает задачу многокритериальной оптимизации:
(4.1)
где R – ресурсы субъекта. Эта зависимость выражает неизвестную, но существующую связь потребностей с состоянием среды Х и поведением U субъекта. Пусть - решение задачи (4.1), т. е. оптимальное поведение субъекта, минимизирующее его потребности А. Способ решения задачи (4.1), позволяющий определить , называется алгоритмом управления
(4.2)
где j - алгоритм, позволяющий синтезировать управление по состоянию среды Х и потребностей Аt. Потребности субъекта изменяются не только под влиянием среды или объекта, но и самостоятельно, отражая жизнедеятельность субъекта, что отмечается индексом t. Алгоритм управления j, которым располагает субъект, и определяет эффективность его функционирования в данной среде. Алгоритм имеет рекуррентный характер: т. е. позволяет на каждом шаге улучшать управление. Например, в смысле , т. е. уменьшения уровня своих потребностей. Процесс управления как организация целенаправленного воздействия на объект может реализовываться как на интуитивном, так и на осознанном уровне. Первый используют животные, второй – человек. Осознанное удовлетворение потребностей заставляет декомпозировать алгоритм управления и вводить промежуточную стадию – формулировку цели управления, т. е. действовать по двухэтапной схеме:
На первом этапе определяется цель управления , причем задача решается на интуитивном уровне: , где j1 – алгоритм синтеза цели Z* по потребностям Аt и состоянию среды X. На втором этапе определяется управление , реализация которого обеспечивает достижение цели Z*, сформированной на первой стадии, что и приводит к удовлетворению потребностей субъекта. Именно на этой стадии может быть использована вся мощь формального аппарата, с помощью которого по цели Z* синтезируется управление где j2 – алгоритм управления. Этот алгоритм и есть предмет изучения кибернетики как науки. Таким образом, разделение процесса управления на два этапа отражает известные стороны науки – неформальный, интуитивный, экспертный и формальный, алгоритмизуемый алгоритм. Если первая пока полностью принадлежит человеку, то вторая является объектом приложения формальных подходов. Естественно, что эти различные функции выполняются разными структурными элементами. Первую функцию f1, выполняет субъект, а вторую f2 - управляющее устройство (УУ). На рис. 4.2 показано взаимодействие этих элементов. Штриховой линией выделена система управления (СУ), выполняющая функцию реализации целей управления U*, формируемых субъектом.
Ряс. 4.2. Взаимодействие Рис. 4.3. Структурная схема элементов системы управления. системы управления.
Система управления
Система управления сложный объект управления. Структурная схема СУ приведена на рис. 4.3. Здесь Dx и Dy – датчики, измеряющие состояние среды и объекта соответственно. Результаты измерений Х'=Dx(Х) и У'=Dy(У) образуют исходную информацию J = {X', У'} для УУ, которое на этой основе вырабатывает команду управления U, являющуюся лишь информацией о том, в какое положение должны быть приведены управляемые входы объекта. Следовательно, управление U есть результат работы алгоритма . Как видно, управление в широком смысле образуется четверкой { .} В качестве примера рассмотрим основные понятия управления в технических и организационных системах. Управление – целенаправленная организация того или иного процесса, протекающего в системе. В общем случае процесс управления состоит из следующих четырех элементов: n получение информации о задачах управления (Z*), n получение информации о результатах управления (т. е. о поведении объекта управления У’); n анализ полученной информации и выработка решения (J = {х'. У'}), n исполнение решения U т. е. осуществление управляющих воздействий U'). Процесс управления – это информационный процесс (рис. 4.4), заключающийся в сборе информации о ходе процесса, передаче ее в пункты накопления и переработки, анализе поступающей, накопленной и справочной информации, принятии решения на основе выполненного анализа, выработке соответствующего управляющего воздействия и доведении его до объекта управления. Каждая фаза процесса управления протекает во взаимодействии с окружающей средой при воздействии различного рода помех. Цели, принципы и границы управления зависят от сущности решаемой задачи. Система управления – совокупность взаимодействующих между собой объекта управления и органа управления, деятельность которых направлена заданной цели управления (рис. 4.5).
В СУ решаются четыре основные задачи управления: стабилизация, выполнение программы, слежение, оптимизация.
Задачами стабилизации системы являются задачи поддержания ее выходных величин вблизи некоторых неизменных заданных значений, несмотря на действие помех. Например, стабилизация напряжения U и частоты f тока в сети вне зависимости от изменения потребления энергии. Задача выполнения программы возникает в случаях, когда заданные значения управляемых величин изменяются во времени заранее известным образом. В системах оптимального управления требуется наилучшим образом выполнить поставленную перед системой задачу при заданных реальных условиях и ограничениях. Понятие оптимальности должно быть конкретизировано для каждого отдельного случая. Прежде чем принимать решение о создании СУ, необходимо рассмотреть все его этапы, независимо от того, с помощью каких технических средств они будут реализованы. Такой алгоритмический анализ управления является основой для принятия решения о создании СУ и степени ее автоматизации. При этом анализе следует обязательно учитывать фактор сложности объекта управления: - отсутствие математического описания системы; - стохастичность поведения; - негативность к управлению; - не стационарность, дрейф характеристик; - невоспроизводимость экспериментов (развивающаяся система все время как бы перестает быть сама собой, что предъявляет специальные требования к синтезу и коррекции модели объекта управления). Особенности сложной системы часто приводят к тому, что цель управления таким объектом в полной мере никогда не достигается, как бы совершенно ни было управление. Системы управления делятся на два больших класса: системы автоматического управления (САУ) и автоматизированные системы управления (АСУ). В САУ управление объектом или системой осуществляется без непосредственного участия человека автоматическими устройствами. Это замкнутые системы. Основные функции САУ: автоматический контроль и измерения, автоматическая сигнализация, автоматическая защита, автоматические пуск и остановка различных двигателей и приводов, автоматическое поддержание заданных режимов работы оборудования, автоматическое регулирование. В отличие от САУ в АСУ в контур управления включен человек, на которого возлагаются функции принятия наиболее важных решений и ответственности за принятые решения. Под АСУ обычно понимают человеко-машинные системы, использующие современные экономико-математические методы, средства электронно-вычислительной техники (ЭВТ) и связи, а также новые организационные принципы для отыскания и реализации на практике наиболее эффективного управления объектом (системой). Популярное:
|
Последнее изменение этой страницы: 2017-03-03; Просмотров: 1019; Нарушение авторского права страницы