Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Метод неопределенных коэффициентов.



Равенство (I) есть тождество. Приведя его к целому виду, получим равенство 2-х многочленов. Но такое равенство всегда выполняется лишь при условии почленного равенства этих многочленов.

Приравнивая коэффициенты при одинаковых степенях х, стоящих в левой и правой частях равенства, получим систему линейных уравнений относительно неизвестных коэффициентов, которую надлежит решить.

Так как разложение (I) всегда существует для любой правильной рациональной дроби, то полученная система всегда совместна.

Такой метод нахождения коэффициентов называется методом неопределенных коэффициентов (способ сравнения коэффициентов).

Приведем пример разложения рациональной функции на элементарные дроби.

Пример 6.6.27. Разложить дробь на элементарные.

последнее уравнение подставим во второе

Таким образом, .

x=2 ;

x=3 .

Следует; .

Метод частных значений требует меньших затрат труда и поэтому заслуживает особого внимания при интегрировании рациональных дробей.

Если корни знаменателя только действительные, то для определения неизвестных коэффициентов целесообразно пользоваться именно этим способом.

В остальных случаях для определения неизвестных коэффициентов можно комбинировать оба способа.

Замечание. Метод частных значений применяется и тогда, когда другие случаи, но здесь нужно тождество дифференцировать.

Таким образом, для интегрирования правильных рациональных дробей достаточно уметь:

1) интегрировать элементарные дроби;

2) разлагать рациональные дроби на элементарные.

3. Интегрирование рациональных дробей

Схема интегрирования рациональных дробей:

Для интегрирования рациональных дробей ;

Где P(x) и Q(x) – многочлены с действительными коэффициентами, последовательно выполняют три шага.

Первый шаг. Если дробь неправильная, то есть степень числителя P(x) больше или равна степени знаменателя Q(x), выделяют целую часть рациональной дроби, деля числитель на знаменатель по правилу деления многочлена на многочлен. После этого рациональная дробь может быть записана в виде суммы:

1) выделенной целой части – многочлена М(х);

2) правильной остаточной дроби :

Второй шаг.

Правильную остаточную дробь разлагают на последующие дроби.

Для этого находят корни уравнения Q(x)=0 и разлагают знаменатель Q(x) на множители первой и второй степени с действительными коэффициентами:

В этом разложении знаменателя множители 1-й степени соответствуют действительным корням, а множители 2-й степени – параллельных сопряженных корней.

Коэффициент при большей степени х в знаменателе Q(x) можно считать равным 1 ибо этого всегда можно добиться, делением на него P(x) и Q(x).

После этого правильная остаточная дробь разлагается на простейшие (элементарные).

Третий шаг. Находят интегралы выделенной целой части и всех элементарных дробей (методами, рассмотренными выше), которые затем складывают.

Пример6.6.28.

Под знаком интеграла – неправильная рациональная дробь, так как степень числитель равна степени знаменателя, поэтому выделяем целую часть:

Таким образом:

 

x=0

x=2

x=3

Пример6.6.29.

Ответ:

Пример 6.6.30.

Пример 6.6.31.

«Интегрирование некоторых классов тригонометрических функций»

Рассмотрим лишь некоторые классы тригонометрических функций, интегрируемых в конечном виде, для которых выработаны удобные на практике приемы интегрирования.

 

Универсальная подстановка

Рассмотрим неопределенный интеграл

Вывод. Из всего рассмотренного вытекает следующее: интеграл от рациональной функции всегда выражается через элементарные функции в конечном виде..

Пример 6.6.32.

Пример6.6.33.

R(sinx, cosx) – рациональная функция от sinx и cosx.

Введем новую переменную по формуле .

Тогда

2)

Следует, что

В результате указанной замены переменной получаем:

, где - -рациональная функция переменной t.

Подстановка пригодна во всех случаях, когда требуется вычислить интеграл

Поэтому ее часто называют универсальной.

Следует, однако, отметить, что универсальная подстановка часто приводит к громоздким вычислениям. Поэтому для ряда частных видов функции выработаны более удобные подстановки.

Пример6.6.34.

Пример6.6.35.

Частные подстановки

Как уже было сказано, универсальная подстановка нередко приводит к сложным выкладкам.

В указанных ниже случаях предпочтительнее сделать частные подстановки, так же рационализирующие интеграл:

Если функция нечетная относительно sinx, т.е.

то применима подстановка

Другими словами, эта подстановка применяется тогда, когда при знаменателе sin на – sinx подынтегральная функция изменяет лишь знак.

Если функция нечетная относительно косинуса, т.е. то применима подстановка

Если функция четная относительно синуса и косинуса, т.е. то применима подстановка

Другими словами, подстановка применяется тогда, когда функция не меняется от перемены знака перед sinx и cosx одновременно

Пример 6.6.36.

Здесь подынтегральная функция нечетная относительно , поэтому

Пример6.6.37.

подынтегральная функция нечетна относительно косинуса

Пример 6.6.38.

 

подынтегральная функция четна

относительно синуса.

Пример. 6.6.39.

a) подстан.

б) подстан.

Неопределенные интегралы вида:

где а и в – простейшие числа;

При вычислении таких интегралов необходимо преобразовать произведение тригонометрических функций в сумму или разность, пользуясь одной из следующих формул:

Пример6.6.40.

Вычисление интегралов вида

где и

Здесь остановимся на следующих 3-х случаях:

1) и - четные неотрицательные числа.

В этом случаи неопределенные интегралы находятся с помощью тригонометрических формул:

Пример 6.6.41.

2) или - нечетное положительное число.

Если хотя бы одно из чисел и - нечетное, то от нечетной степени отделяется множитель и вводится новая переменная.

В частности, если , то

Другими словами, если показатель степени одной из тригонометрических функций – нечетное положительное число, то другую функцию принимают за t.

Пример6.6.42.

3) ) + - четное отрицательное число.

Если сумма показателей синуса и косинуса есть четное отрицательное число, подстановка сводит интеграл к табличным (либо подстановка ).

Пример6.6.43.

Пример 6.6.44.

Остановимся на некоторых из них:

Пример6.6.45.

Однако целесообразнее ввести в числителе тригонометрическую единицу во второй степени.

Пример 6.6.46.

Пример 6.6.47.

Пример 6.6.48.Вычисления с помощью универсальной подстановки ; но она приводит к большим выкладкам.

Примечание. Формулы понижения степени:

Тригонометрические подстановки

1) При вычислении интегралов вида

Где - рациональная функция относительно “х” и “ ” (то есть, когда подынтегральная функция содержит только радикалы вида ) часто бывает полезна подстановка (или x = acost)

Любая из них приводит подынтегральную функцию к рациональному виду относительно sint и cost.

Пример6.6.49. и т.д.

Пример6.6.50.

2) Интегралы вида рационализируется подстановкой.

Пример.

2) Интеграл вида рационализируются подстановкой

Пример 6.6.51.

3) Интеграл вида

4) Применяется подстановка

Пусть требуется вычислить где - некоторая алгебраическая явная иррациональная функция.

Здесь стараются подобрать такую подстановку (ее обычно называют рационализирующей) , чтобы функция оказывалась рациональной.

  1. Интегралы вида , где -рациональные числа
  2. R - рациональная функция от аргументов

Для рационализации подынтегральной функции применяется подстановка или , где - общий знаменатель дробей

( - общее наименьшее кратное показателей всех радикалов, под которыми х входят в подынтегральную функцию).

Подстановка рационализирует рассматриваемый интеграл, то есть сводит его к интегралу рациональной дроби: = после введения ‘t’, каждая дробная степень х выразиться через целую степень ‘t’, и, следующая подынтегральная функция будет рациональной относительно переменной ‘t’

Пример6.6.52.

Где

2. где (т.е. рациональные числа);

.

Интегралы этого вида рационализируются подстановкой , или ,

Где - общий знаменатель дробей

Вопрос сводится к интегрированной рациональной функции .

 

 

Пример 6.6.53.

.

Пример 6.6.54.

- многочлен степени n.

Имеет место следующая формула:

Где - многочлен степени ”n-1” c неопределенными коэффициентами;

- постоянное число.

(доказательство, см.Фихтенг., т.2, стр.67).

Многочлен и находятся так:

1) Записывают равенство (I) с неопределенными коэффициентами для многочлена Q(x), беря степень многочлена Q(x) на единицу меньше степени многочлена Pn(x).

2) Дифференцируют обе части равенства(I), в результате чего исчезают интегралы.

3) Умножают полученное равенство на , в результате чего исчезают иррациональности.

4) По методу неопределенных коэффициентов определяют коэффициенты многочлена Q(x) и число .

5) Найденные значения подставляют в формулу и вычисляют интеграл

Пример6.6.55.Вычислить .

дифференцируем обе части:

Умножаем почтенно на :

;

откуда имеем:

4. ; где

Применяется подстановка .

С помощью этой подстановки интеграл сводится к рассмотренным ранее (в зависимости от “n”).

Пример6.6.56.

.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-03; Просмотров: 1085; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.081 с.)
Главная | Случайная страница | Обратная связь