Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Исторический обзор работ в области ИС.



Выделяют следующие алгоритмы интеллектуальных вычислений:

  • нейронные сети;
  • деревья решений;
  • системы размышлений на основе аналогичных случаев;
  • алгоритмы определения ассоциаций и последовательностей;
  • нечеткая логика;
  • генетические алгоритмы;
  • эволюционное программирование;
  • визуализация данных;
  • комбинация

Среди важнейших классов задач, которые ставились перед ИС с момента ее зарождения как научного направления (с середины 60-х годов ХХ века), следует выделить следующие трудно формализуемые задачи: доказательство теорем, управление роботами, распознавание изображений, машинный перевод и понимание текстов на естественном языке, игровые программы, машинное творчество (синтез музыки, стихотворений, текстов).

 

 

Программы для решения интеллектуальных задач (ИЗ) (рис.3) могут быть разделены на несколько групп, которые определяются типом задач, решаемых этими программами. Первую группу составляют игровые программы, они, в свою очередь, делятся на две подгруппы: человеческие игры и компьютерные игры. Особенностью всех программ для имитации человеческих игр является большая роль поисковых процедур — поиск лучшего или локально лучшего хода требует в сложных играх типа шахмат просмотра большого числа вариантов. Недаром шахматные программы являются специальным тестом для проверки эффективности поисковых процедур.

Изучение приемов доказательства теорем сыграло важную роль в развитии ИИ. Формализация дедуктивного процесса с использованием логики предикатов помогает глубже понять некоторые компоненты рассуждений.

 

Рис.3 Программы для решения ИЗ

 

Многие неформальные задачи, например, медицинская диагностика, допускают

формализацию как задачу на доказательство теорем. Поиск доказательства математической теоремы требует не только произвести дедукцию, исходя из гипотез, но также создать интуитивные догадки и гипотезы о том, какие промежуточные утверждения следует доказать для вывода доказательства основной теоремы.

В 1954 году А. Ньюэлл задумал создать программу для игры в шахматы. Дж. Шоу и Г. Саймон объединились в работе по проекту Ньюэлла и в 1956 году они создали язык программирования IPL-I (предшественник LISPа) для работы с символьной информацией. Их первыми программами стала программа LT (Logic Theorist) для доказательства теорем и исчисления высказываний (1956 год), а также программа NSS (Newell, Shaw, Simon) для игры в шахматы (1957 год). LT и NSS привели к созданию А. Ньюэллом, Дж. Шоу и Г. Саймоном программы GPS (General Problem Solver) в 1957-1972 годах Программа GPS моделировала используемые человеком общие стратегии решения задач и могла применяться для решения шахматных и логических задач, доказательства теорем, грамматического разбора предложений, математического интегрирования, головоломок типа «Ханойская башня» и т. д. Процесс работы GPS воспроизводит методы решения задач, применяемые человеком: выдвигаются подцели, приближающие к решению, применяется эвристический метод (один, другой и т. д.), пока не будет получено решение. Попытки прекращаются, если получить решение не удается. Программа GPS могла решать только относительно простые задачи. Ее универсальность достигалась за счет эффективности. Специализированные «решатели задач» - STUDENT (Bobrov, 1964) и др. лучше проявляли себя при поиске решения в своих предметных областях. GPS оказалась первой программой (написана на языке IPL-V), в которой предусматривалось планирование стратегии решения задач.

Для решения трудно формализуемых задач и, в частности, для работы со знаниями были созданы языки программирования для задач ИИ: LISP (1958 год, J. MacCatthy), Пролог (1975-79 годы, D. Warren, F. Pereira), ИнтерLISP, FRL, KRL, SMALLTALK, OPS5, PLANNER, QA4, MACSYMA, REDUCE, РЕФАЛ, CLIPS. К числу наиболее популярных традиционных языков программирования для создания ИС следует также отнести С++.

 

Распознавание изображений.

Рождение робототехники выдвинуло задачи машинного зрения и распознавания изображений в число первоочередных.

В традиционном распознавании образов появился хорошо разработанный математический аппарат, и для не очень сложных объектов оказалось возможным строить практически работающие системы классификации по признакам, по аналогии и т. д. В качестве признаков могут рассматриваться любые характеристики распознаваемых объектов. Признаки должны быть инвариантны к ориентации, размеру и вариациям формы объектов. Алфавит признаков придумывается разработчиком системы. Качество распознавания во многом зависит от того, насколько удачно придуман алфавит признаков. Распознавание состоит в априорном получении вектора признаков для выделенного на изображении отдельного распознаваемого объекта, и лишь затем в определении того, какому из эталонов этот вектор соответствует.

П. Уинстон в начале 80-х годов обратил внимание на необходимость реализации целенаправленного процесса машинного восприятия. Цель должна управлять работой всех процедур, в том числе и процедур нижнего уровня, т. е. процедур предварительной обработки и выделения признаков. Должна иметься возможность на любой стадии процесса в зависимости от получаемого результата возвращаться к его началу для уточнения результатов работы процедур предшествующих уровней. У П. Уинстона, так же как и у других исследователей, до решения практических задач дело не дошло, хотя в 80-е годы вычислительные мощности больших машин позволяли начать решение подобных задач. Таким образом, ранние традиционные системы распознавания, основывающиеся на последовательной организации процесса распознавания и классификации объектов, эффективно решать задачи восприятия сложной зрительной информации не могли.

 

Экспертные системы.

Методы ИИ нашли применение при создании автоматических консультирующих систем. До 1968 года исследователи в области ИИ работали на основе общего подхода - упрощения комбинаторики, базирующегося на уменьшении перебора альтернатив исходя из здравого смысла, применения числовых функций оценивания и различных эвристик.

Экспе́ ртная систе́ ма (ЭС, expert system) — компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. Предтечи экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания.

В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.

Похожие действия выполняет такой программный инструмент как Мастер (Wizard). Мастера применяются как в системных программах так и в прикладных для упрощения интерактивного общения с пользователем (например, при установке ПО). Главное отличие мастеров от ЭС — отсутствие базы знаний — все действия жестко запрограммированы. Это просто набор форм для заполнения пользователем.

Другие подобные программы — поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие (релевантные) разделы базы статей (представления об объектах областей знаний, их виртуальную модель).

Структура ЭС:

- Интерфейс пользователя

- Пользователь

- Интеллектуальный редактор базы знаний

- Эксперт

- Инженер по знаниям

- Рабочая (оперативная) память

- База знаний

- Решатель (механизм вывода)

- Подсистема объяснений

 

База знаний состоит из правил анализа информации от пользователя по конкретной проблеме. ЭС анализирует ситуацию и, в зависимости от направленности ЭС, дает рекомендации по разрешению проблемы.

Как правило, база знаний экспертной системы содержит факты (статические сведения о предметной области) и правила — набор инструкций, применяя которые к известным фактам можно получать новые факты.

В рамках логической модели баз данных и базы знаний записываются на языке Пролог с помощью языка предикатов для описания фактов и правил логического вывода, выражающих правила определения понятий, для описания обобщенных и конкретных сведений, а также конкретных и обобщенных запросов к базам данных и базам знаний.

Конкретные и обобщенные запросы к базам знаний на языке Пролог записываются с помощью языка предикатов, выражающих правила логического вывода и определения понятий над процедурами логического вывода, имеющихся в базе знаний, выражающих обобщенные и конкретные сведения и знания в выбранной предметной области деятельности и сфере знаний.

Обычно факты в базе знаний описывают те явления, которые являются постоянными для данной предметной области. Характеристики, значения которых зависят от условий конкретной задачи, ЭС получает от пользователя в процессе работы, и сохраняет их в рабочей памяти. Например, в медицинской ЭС факт «У здорового человека 2 ноги» хранится в базе знаний, а факт «У пациента одна нога» — в рабочей памяти.

База знаний ЭС создается при помощи трех групп людей:

эксперты той проблемной области, к которой относятся задачи, решаемые ЭС;

инженеры по знаниям, являющиеся специалистами по разработке ИИС;

программисты, осуществляющие реализацию ЭС.

Режимы функционирования

ЭС может функционировать в 2-х режимах.

1.Режим ввода знаний — в этом режиме эксперт с помощью инженера по знаниям посредством редактора базы знаний вводит известные ему сведения о предметной области в базу знаний ЭС.

2.Режим консультации — пользователь ведет диалог с ЭС, сообщая ей сведения о текущей задаче и получая рекомендации ЭС. Например, на основе сведений о физическом состоянии больного ЭС ставит диагноз в виде перечня заболеваний, наиболее вероятных при данных симптомах.

 

Классификация ЭС по решаемой задаче:

- Интерпретация данных

- Диагностирование

- Мониторинг

- Проектирование

- Прогнозирование

- Сводное Планирование

- Обучение

- Управление

- Ремонт

- Отладка

 

Классификация ЭС по связи с реальным временем:

- Статические ЭС - это ЭС, решающие задачи в условиях не изменяющихся во времени исходных данных и знаний.

- Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.

- Динамические ЭС - это ЭС, решающие задачи в условиях изменяющихся во времени исходных данных и знаний.

 

Этапы разработки ЭС:

- Этап идентификации проблем — определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.

- Этап извлечения знаний — проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.

- Этап структурирования знаний — выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.

- Этап формализации — осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.

- Реализация ЭС — создается один или нескольких прототипов ЭС, решающие требуемые задачи.

- Этап тестирования — производится оценка выбранного способа представления знаний в ЭС в целом.

 

В начале 70-х годов произошел качественный скачок и пришло понимание, что необходимы глубокие знания в соответствующей области и выделение знаний из данных, получаемых от эксперта. Появляются экспертные системы (ЭС), или системы, основанные на знаниях.

ЭС MYCIN (середина 70-х годов, Стэнфордский университет) ставила диагноз при инфекционных заболеваниях крови.

ЭС PROSPECTOR (1974-1983 годы, Стэнфордский университет) обнаруживала полезные ископаемые.

ЭС SOPHIE обучала диагностированию неисправностей в электрических цепях. ЭС XCON помогала конфигурировать оборудование для систем VAX фирмы DEC, ЭС PALLADIO помогала проектировать и тестировать СБИС-схемы.

ЭС JUDITH помогает специалистам по гражданским делам и вместе с юристом и с его слов усваивает фактические и юридические предпосылки дела, а затем предлагает рассмотреть различные варианты подходов к разрешению дела.

ЭС LRS оказывает помощь в подборе и анализе информации о судебных решениях и правовых актах в области кредитно-денежного законодательства, связанного с использованием векселей и чеков.

ЭС «Ущерб» на основе российского трудового законодательства обеспечивает юридический анализ ситуации привлечения рабочих и служащих к материальной ответственности при нанесении предприятию материального ущерба действием или бездействием.

Разработка инструментальных средств для создания ЭС ведется постоянно. Появляются экспертные системы оболочки, совершенствуются технологии создания ЭС. Язык Пролог (1975-79 годы) становится одним из основных инструментов создания ЭС. Язык CLIPS (C Language Integrated Production System) начал разрабатываться в космическом центре Джонсона NASA в 1984 году. Язык CLIPS свободен от недостатков предыдущих инструментальных средств для создания ЭС, основанных на языке LISP. Появляется инструментарий EXSYS, ставший в начале 90-х годов одним из лидеров по созданию ЭС. В начале ХХI века появляется теория интеллектуальных агентов и экспертных систем на их основе. Web-ориентированный инструментарий JESS (Java Expert System Shell), использующий язык представления знаний CLIPS, приобрел достаточную известность в настоящее время. Среди отечественных инструментальных средств следует отметить веб ориентированную версию комплекса АТ-ТЕХНОЛОГИЯ, разработанного на кафедре Кибернетики МИФИ. В этом комплексе вся прикладная логика как комплекса в целом, так и разработанных в нем веб интегрированных ЭС, сосредоточена на стороне сервера.

Практика внедрения ЭС показала, что нет чудодейственных рецептов - нужна кропотливая работа по вводу в ЭВМ опыта и знаний специалистов всех областей науки.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-08; Просмотров: 1019; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.048 с.)
Главная | Случайная страница | Обратная связь