Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Динамические экспертные системы и базы знаний. Структурная схема динамической экспертной системы (ДЭС).
Экспертная система представляет собой автоматизированную информационную систему, обеспечивающую пользователя-управленца, пользователя-проектировщика и т.д. экспертной информацией или рекомендациями, формируемыми самой системой но основе специальных алгоритмов логической обработки исходной информации. В основе функционирования ЭС лежит база знаний, в которой содержится логические конструкции типа: если а (импликация), то b. Эти конструкции называются -однопосылочным правилом вывода; -продукцией; -продукцией Эмиля Поста. Все экспертные системы можно разделить на два больших класса: 1) статические экспертные системы 2) динамические экспертные системы Статические экспертные системы имеют неизменную во времени базу знаний и делают выводы на ее основе. Динамические экспертные системы имеют изменяемую во времени базу знаний и делают выводы на ее основе. Поэтому в таких динамических экспертных системах одна и та же задача может быть решена по-разному, если вы обратитесь к экспертной системе в разное время. Например, экспертная система, прогнозирующая поведение финансовых рынков. Динамические экспертные системы по сравнению со статическими содержат дополнительно два следующих компонента: подсистему моделирования внешнего мира и подсистему взаимодействия с внешним миром. База знаний (БЗ; англ. knowledge base, KB) в информатике и исследованиях искусственного интеллекта — это особого рода база данных, разработанная для оперирования знаниями (метаданными). База знаний содержит структурированную информацию, покрывающую некоторую область знаний, для использования кибернетическим устройством (или человеком) с конкретной целью. Современные базы знаний работают совместно с системами поиска информации, имеют классификационную структуру и формат представления знаний. Полноценные базы знаний содержат в себе не только фактическую информацию, но и правила вывода, допускающие автоматические умозаключения о вновь вводимых фактах и, как следствие, осмысленную обработку информации. Область наук об искусственном интеллекте, изучающая базы знаний и методы работы со знаниями, называется инженерией знаний. Иерархический способ представления в базе знаний набора понятий и их отношений называется онтологией. Онтологию некоторой области знаний вместе со сведениями о свойствах конкретных объектов также можно назвать базой знаний. База знаний — важный компонент интеллектуальной системы. Наиболее известный класс таких программ — это экспертные системы. Они предназначены для поиска способов решения проблем из некоторой предметной области, основываясь на записях БЗ и на пользовательском описании ситуации. Двумя наиболее важными требованиями к информации, хранящейся в базе знаний интеллектуальной системы, являются:
Ниже перечислены некоторые из особенностей, которые могут (но не обязаны) быть у системы, оперирующей базами знаний.
На рисунке 1 представлена структура экспертной системы динамического типа: Рис.1 Структура экспертной системы динамического типа Пояснения:
Рабочая память предназначена для хранения исходных и промежуточных фактов решаемой в текущий момент задачи. Как правило, размещается в оперативной памяти ЭВМ и отражает текущее состояние предметной области в виде фактов с коэффициентами уверенности (КУ) в истинности этих фактов. Экспертные системы относятся к классу интеллектуальных систем, основывающихся на понимании факта. Другими словами экспертные системы основываются на знаниях специалиста-эксперта о предметной области. Высококачественный опыт наиболее квалифицированных специалистов, доступный для всех пользователей системы, становится фактором, резко повышающим качество принимаемых решений для организации, использующей экспертные системы в целом. Подсистема приобретения и пополнения знаний автоматизирует процесс наполнения экспертной системы знаниями, осуществляемый пользователем-экспертом, и адаптации базы знаний системы к условиям ее функционирования. Адаптация экспертной системы к изменениям в предметной области реализуется путем замены правил или фактов в базе знаний. Подсистема объяснения объясняет, как система получила решение задачи (или почему она не получила решения) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату. Возможность объяснять свои действия является одним из самых важных свойств экспертной системы, так как:
Структура экспертной системы была бы неполной без подсистемы диалога. Подсистема диалога ориентирована на организацию дружественного интерфейса со всеми категориями пользователей как в ходе решения задач, так и в ходе приобретения знаний и объяснения результатов работы. Примером динамической экспертной системы может являться управление производством различных медикаментов в фармацевтической промышленности. Популярное:
|
Последнее изменение этой страницы: 2017-03-09; Просмотров: 2734; Нарушение авторского права страницы