Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
История возникновения категорий симметрии
Познавательную силу симметрии оценили философы Древней Греции, используя ее в своих натурфилософских теориях. Так, например, Анаксимандр из Милета, живший в первой половине VI в. до н. э., использовал симметрию в своей космологической теории, где в центре мира поместил Землю — главное, по его мнению, тело мира. Она должна была иметь совершенную, симметричную форму, форму цилиндра, а на периферии вращаются огромные огненные кольца, закрытые воздушными облаками и дырками, которые и кажутся нам звездами. Земля расположена точно в центре, и здесь симметрия имеет смысл равновесия. Весы известны человеку с III в. до н. э. В состоянии равновесия массы грузов на разных концах коромысла одинаковы — положение коромысла симметрично относительно центра тяжести. Симметрия — это не только равновесие, но и покой: стоит добавить на одну из чашек весов дополнительный груз, как они придут в движение. Нарушено равновесие, исчезла симметрия — появилось движение. Эмпедокл считал Вселенную сферой — воплощением гармонии и покоя. Сферос — огромный однородный шар, порождение двух противоположных стихий — Любви и Вражды. Первая стихия соединяет, вторая — разъединяет. Их гармония — симметрия — приводит к устойчивому, циклическому равновесию мира — Сферосу. Преобладание одной или другой стихией — асимметрия — приводит к циклическому ходу мирового процесса. Идею симметрии использовали и атомисты — Левкипп и Демокрит. По их учению, мир состоит из пустоты и атомов, из которых построены все тела и души. Таким образом, древнее искусство использовало пространственную симметрию. Гармония (симметрия) состоит из противоположностей. В пространственной симметрии противоположности явно видны. Например, правая и левая кисти рук человека. Таких противоположностей древние ученые насчитали десять пар, например, чет — нечет, прямое — кривое, правое — левое и т.д. Леонардо да Винчи не обошел своим вниманием и симметрию. Он рассмотрел равновесие шара, имеющего опору в центре тяжести: две симметричные половины шара уравновешивают друг друга и шар не падает. Как художник он главное внимание уделял изучению законов перспективы и пропорций, с помощью которых выявляются художественные достоинства произведений искусства. В науку симметрия вошла в 30-х гг. XIX в. в связи с открытием Гесселем 32 кристаллографических классов и появлением теории групп как области чистой математики. Кристаллы наделены наибольшей величиной симметрии из всех реальных объектов, они блещут своей симметрией. Кристаллы — это симметричные тела, структура которых определяется периодическим повторением в трех измерениях элементарного атомного мотива. Симметрия является основным предметом изучения кристаллографии. Она — основной теоретический принцип и практический метод классификации кристаллов. Симметричной в кристаллографии считается фигура, которая делится без остатка на равные и одинаково расположенные части. Величина симметрии определяется наибольшим числом равных и одинаково расположенных частей фигуры, на которые она делится без остатка. Э. Галуа предложил классифицировать алгебраические уравнения по их группам симметрии. Ф. Клейн предложил взять идею симметрии в качестве единого принципа при построении различных геометрий. Выйдя за пределы геометрии, эта идея, развиваясь, сделала очевидным тот факт, что принцип симметрии служит той единственной основой, которая может объединить все разрозненные части огромного здания современной математики. Клейн развил свою концепцию в физике и механике. Программа Клейна как задача поиска различных форм симметрии выходит за рамки не только геометрии, но и всей математики в целом, превращается в проблему поиска единого принципа для всего естествознания. Симметрия в архитектуре Прекрасные образы симметрии демонстрируют произведения архитектуры. Большинство зданий зеркально симметричны. Это обусловлено их функциональной природой. Общие планы зданий, архитектура фасадов, оформление внутренних помещений, орнаменты, карнизы, колонны, потолки, если их рассматривать с точки зрения присутствующих в них пространственных закономерностей, можно описать той или иной группой симметрии материальных фигур. Особенно интересно проявление симметрии в древнерусских постройках, в частности в деревянных церквах, которыми издавна славилась Россия. В XVII—XVTII вв. на Руси были распространены так называемые ярусные храмы, завершавшиеся поставленными друг на друга, уменьшающимися по величине срубами. Старая русская архитектура дает много и других примеров интуитивного или сознательного использования симметрии для решения эстетических задач. Достаточно назвать колокольни, звонницы, сторожевые башни, внутренние опорные столбы. Более поздние каменные русские храмы, дворцы, садово-парковые ансамбли тоже несут на себе явный отпечаток симметрии. Богатство симметрии и красота орнаментов кажутся бесконечными. Яркий пример тому — азербайджанские или турецкие ковры, где нет предела фантазии мастеров. Применить парную меру при создании архитектурного сооружения или объекта — значит придать его пространственной структуре свойство взаимопроникновения подобий. Но оно должно быть согласовано с восприятием человека. Достаточно очевидно, что соединять в целостную структуру множественные части можно тогда, когда ясна композиция (например, детские кубики): композиционная связь скрепляется математическими соотношениями, сопоставлением однородных, либо противоположных элементов. Поэтому создавать непротиворечивые ассоциативные образы должны все средства художественной выразительности: пластика, цветовая гармония, пропорция. Придать ту или иную соразмерность прямоугольнику, очерчивающему силуэт постройки или его деталь, еще не значит создать эмоциональное или эстетическое воздействие. Но в целостности алгоритма объекта искусства силуэт и деталь играют важнейшую роль — об этом свидетельствуют сами памятники архитектуры, привлекающие наше внимание своей выразительностью и эстетическими достоинствами. История архитектуры знает ассоциации разного типа. Существует архитектурный образ как символ величия и значимости, с абсолютным канонизмом выраженной геометрией пирамиды. Существует другой архитектурный образ, ассоциирующий тело человека (Парфенон), существуют также образы, заключившие в архитектурную оболочку ассоциации состояний души человека, существуют и образы, ассоциативно соединяющие с образом человека ландшафты (например, храмы древних Пскова и Новгорода). Искусство архитектора состоит в том, чтобы заставить различные средства художественной выразительности выстроить один, верно прочувствованный в отношении функций и окружения образ, чтобы ассоциации, которые осуществляют светотень, контурная линия и пропорциональный строй дополняли бы друг друга. В эпоху Древней Греции классический греческий храм является носителем человеческого начала: он существует на языке архитектуры монументализированного человека — героя. Периптер состоит из ряда индивидуальных колонн. Сама форма колонны вызывает ассоциации, связанные с человеческим телом. Прежде всего — вертикальные колонны. Ведь вертикаль — это главная ось человеческою тела, характерная особенность внешнего облика человека, главного его отличия от облика животного. Колонна полновесна, в ней вертикаль превратилась в реальное тело. Телесность ствола колонны особенно усиливается благодаря неравновесному утончению самого ствола, которое окончательно лишает его абстрактной математичности и придает ему характер органической материи. Колонна Парфенона воспроизводит с математической точностью канон пропорций человеческого тела, описанный Витрувием, изображенный Леонардо да Винчи, Микеланджело, но ни Витрувий и никто другой не заметили бы это. Что значит воспроизводить пропорцию, крепость и красоту мужского тела в колоннаде? Это значит воспроизвести его способность принять на себя тяжесть антаблемента. Атланты, заменив собой в ряде случаев колонны, склоняют головы, чтобы принять тяжесть антаблемента руками. Желая воспроизвести в колонне крепость мужского тела и рассуждая по аналогии, строитель установил аналогию между стволом колонны и телом человека, измеренным от стопы до основания шеи. В этом нет ни малейших сомнений. Греки называли ствол колонны «телом». Камни, из которых сложен Парфенон, свидетельствуют о том же. И действительно, в каноне Витрувия отношение стопы к росту равно 1: 6, а отношение высоты головы и шеи к росту также 1: 6 (по Витрувию, Леонардо да Винчи, Микеланджело). Отсюда ясно, что стопа относится к высоте тела как 1: 6. В античном храме вся суть — в колонне. Воздушное пространство вторично, оно лишь выгодный фон, на котором эта колонна читается. В крестово-купольном храме суть — пространство интерьера, а стены, столбы и своды — только оболочка, формирующая и фиксирующая форму пространства конструкции. Архитектура храмов Новгорода и Пскова — новое звено в отношении мастера к ассоциативному образу. Она имеет другой строй ассоциации, который сдвигается в сторону более открытого и непосредственного обобщения образа человека, заменяет ассоциации тонкими, почти неуловимыми, легко угадываемыми. Здесь нередко в целом объеме храма ассоциирован богатырь-воин. Появляются одноглавые храмы с крепким объемом, покрытиями, закругленными, словно плечи воина, главами. Глава венчается шлемовидным покрытием. Храмы стоят, словно вросшие в землю по пояс былинные богатыри. Египетские пирамиды — это не только сооружение, поражающее воображение простотой форм и их грациозностью, контрастом между ростом человека и необъятностыо его творения. Это не только памятники строительного, инженерного, математического и астрономического знания и образы, смысл которых помогает понять геометрия. Великие пирамиды задуманы как геометрический символ — полуоктаэдр. Наклон ребра, определенный отношением 1: 1, есть смысловой образ: величие, незыблемость, вечность. Ибо пирамида не принижена, не покорена пустыней и в то же время вертикализмом своим не противопоставлена окружающему пространству. Полуоктаэдр есть пирамида, квадратная в плане, вертикальные диагональные сечения которой образуют прямоугольные фигуры. Они задуманы так, чтобы ребра пирамиды казались одинаково склоненными к горизонту и к зениту: впечатлением, которое надлежало произвести пирамиде, должен быть треугольник с прямым углом в вершине, причем основание пирамиды воспроизводится как стороны двойного квадрата 2, а высота — как 1. Теория узоров берет свое начало в математике большинства народов древнего мира. Изящество форм и линий, которыми отличается искусство орнамента древних, наводит на мысль о том, что художники того времени были осведомлены об абстрактной проблеме покрытия плоскости конгруэнтными и различными многоугольниками. Типы симметрии, которые встречаются в повторяющихся узорах, ограничены типами симметрии форм, используемых для построения узоров. Последние же ограничены числом способов, которыми можно составить многоугольник, чтобы покрыть плоскость без промежутков и наложений, или многогранники, чтобы заполнить трехмерное пространство. Узоры на обоях, кафельных плитах и стенах основаны на параллелограммах, треугольниках, квадратах, шестиугольниках и т.п. Теорию симметрии можно считать торжеством человеческого разума. Она включает в себя восприятие порядка в хаотической Вселенной, изучение форм, которые могут принимать упорядочение и придавать значение наблюдаемому. Симметрия в технике Техника пока интуитивно, подсознательно использует и заимствует законы природной симметрии, тело, обладающее весовой и пространственной, геометрической симметрией, имеет суженный спектр частот собственных колебаний, что соответствует более устойчивой жизнедеятельности тела и организма. В технике плоскость симметрии делит машину на две равные части. Любой станок, машина, прибор, механизм, узел должны компоноваться вокруг установленной оси симметрии. Асимметрия Асимметрия — это несимметрия, т.е. такое состояние, когда симметрия отсутствует. Но еще Кант говорил, что отрицание никогда не является простым исключением или отсутствием соответствующего положительного содержания. Например, движение — это отрицание своего предыдущего состояния, изменение объекта. Движение отрицает покой, но покой не есть отсутствие движения, так как очень мало информации и эта информация ошибочна. Отсутствия покоя, как и движения, не бывает, поскольку это две стороны одной и той же сущности. Покой — это другой аспект движения. Полного отсутствия симметрии также не бывает. Фигура, не имеющая элемента симметрии, называется асимметричной. Но, строго говоря, это не так. В случае асимметричных фигур расстройство симметрии просто доведено до конца, но не до полного отсутствия симметрии, так как эти фигуры еще характеризуются бесконечным числом осей первого порядка, которые также являются элементами симметрии. Асимметрия связана с отсутствием у объекта всех элементов симметрии. Такой элемент неделим на части. Примером является рука человека. Асимметрия — это категория, противоположная симметрии, которая отражает существующие в объективном мире нарушения равновесия, связанные с изменением, развитием, перестройкой частей целого. Так же, как мы говорим о движении, имея в виду единство движения и покоя, так же симметрия и асимметрия — две полярные противоположности объективного мира. В реальной природе нет чистых симметрии и асимметрии. Они всегда находятся в единстве и непрерывной борьбе. На разном уровне развития материи присутствует то симметрия (относительный порядок), то асимметрия (тенденция нарушения покоя, движение, развитие), но всегда эти две тенденции едины и их борьба абсолютна. Реальные, даже самые совершенные кристаллы далеки по своей структуре от кристаллов идеальной формы и идеальной симметрии, рассматриваемой в кристаллографии. В них имеются существенные отступления от идеальной симметрии. Они имеют и элементы асимметрии: дислокации, вакансии, оказывающие влияние на их физические свойства. Приведенные определения симметрии и асимметрии указывают на универсальный, общий характер симметрии и асимметрии как свойств материального мира. Анализ понятия симметрии в физике и математике (за редким исключением) имеет тенденцию к абсолютизации симметрии и трактовке асимметрии как отсутствия симметрии и порядка. Антипод симметрии выступает как понятие чисто негативное, но заслуживающее внимания и остается в тени. Значительный интерес к асимметрии возник в середине XIX в. в связи с опытами Л. Пастера по изучению и разделению стереоизомеров. Асимметрия в живой природе Молекулярная асимметрия была обнаружена и открыта Л. Пастером, которому удалось выделить левые и правые кристаллы винной кислоты. Асимметрия кристаллов кварца — в его оптической активности. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер. Если считать, что равновесие характеризуется состоянием покоя и симметрии, а асимметрия связана с движением и неравновесным состоянием, то понятие равновесия играет в биологии не менее важную роль, чем в физике. Всеобщий закон биологии — принцип устойчивого термодинамического равновесия живых систем, определяет специфику биологической формы движения материи. Действительно, устойчивое термодинамическое равновесие (асимметрия) является основным принципом, который не только охватывает все уровни познания живого, но и выступает в качестве ключевого принципа постановки и решения происхождения жизни на земле. Понятие равновесия может быть рассмотрено не только в статическом аспекте, но и в динамическом. Симметричной считается среда, находящаяся в состоянии термодинамического равновесия, среда с высокой энтропией и максимальным беспорядком частиц. Асимметричная среда характеризуется нарушением термодинамического равновесия, низкой энтропией и высокой упорядоченностью структуры. При рассмотрении целостного объекта картина меняется. Симметричные системы, например, кристаллы, характеризуются состоянием равновесия и упорядоченности. Но асимметричные системы, которыми являются живые тела, также характеризуются равновесием и упорядоченностью с тем только различием, что в последнем случае имеем дело с динамической системой. Таким образом, устойчивое термодинамическое равновесие (или асимметрия) статической системы есть другая форма выражения устойчивого динамического равновесия, высокой упорядоченности и структурности организма на всех его уровнях. Такие системы называются асимметричными динамическими системами. Здесь нужно только указать, что структурность носит динамический характер. Понятие равновесия тоже не является только статическим, имеется и динамический аспект. Состояние симметрии и движения не есть нарушение равновесия вообще, а есть состояние динамического равновесия. Здесь можно говорить о мере симметрии вообще, подобно тому, как в физике оперируют понятием движения. Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 2584; Нарушение авторского права страницы