Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Модификации психологических методик для развития функций программирования и контроля
Результаты современных нейропсихологических исследований высших психических функций в онтогенезе показывают большую роль благополучного становления регуляторных функций для развития ребенка и его эффективного обучения. По мнению многих авторов, неготовность к школе, неуспешность обучения, негативные нейропсихологические синдромы в значительном числе случаев связаны с недостаточной сформированностью процессов программирования, регуляции и контроля (Микадзе, 1999; Пылаева, 1998; Семенович, 2002). Естественна в этой связи актуальность разработки методик, развивающих эти функции. При их создании детский нейропсихолог должен учитывать данные различных областей знаний о ребенке. Вместе с тем принципиальным, основным фундаментом разработки методов коррекции и развития регуляторных функций и на сегодня являются открытия А. Р. Лурия и его школы. Это и всесторонний анализ вариативности «лобного синдрома», и целенаправленность подходов к стратегии и тактике восстановительного обучения, и комплексность предварительного анализа применяемых методик и материалов («Лобные доли и регуляция психических процессов», 1966). Ставшие классическими работы А. Р. Лурия приобретают сегодня «второе рождение», современное звучание в детской нейропсихологии. В данной главе представлены методики, которые целесообразно включать в общую программу развития функций программирования, регуляции и контроля. Это широко известные в психологии методики «Куб Линка», «Графический диктант», «Таблицы Шульте». Процедура проведения каждой методики была модифицирована и дополнена серией заданий, позволяющих получать коррекционный эффект. Эти модификации были проверены в коррекционно-развивающем обучении детей дошкольного и школьного возрастов и обнаружили свою эффективность. «Куб Линка» Методика «Куб Линка» исходно направлена на исследование конструктивной деятельности, наглядного мышления. Она применяется в клинической психологии на протяжении многих десятилетий. В школе А. Р. Лурия эта методика с успехом использовалась для анализа «лобного» синдрома (Гаджиев, 1966). В детской психологии под названием «Уникуб» она входит в арсенал развивающих игр (Никитин, Никитина, 1990). «Проба Линка» – это конструирование большого одноцветного куба из группы маленьких, стороны которых определенным образом окрашены в три цвета. Такая конструктивная задача требует значительной предварительной ориентировки в условиях и самом материале задания. Предварительная ориентировка и анализ материала, нахождение адекватного пути конструирования, то есть планирование, – это обязательные условия эффективного решения данной задачи. Однако, как показали результаты исследований (Гаджиев, 1966) и наши собственные наблюдения, даже взрослые люди очень часто начинают выполнение методом проб и ошибок, без предварительной ориентировки и планирования. Правильная стратегия (программа) вырабатывается уже в процессе выполнения. Таким образом, задача решается медленно и с ошибками. Для использования в коррекционно-развивающем обучении мы преобразовали задание в некоторую игру по строительству трехэтажного дома определенного цвета, например красного или зеленого. Детям предъявляются наглядный план строительства, присланный архитектором (рис. 2.3.1), строительный материал: кубики – и инструкция (программа) построения. Рис. 2.3.1. Наглядный план строительства дома-куба: I, II, III – планы этажей; 1), 2), 3) – последовательность строительства каждого этажа Педагог вместе с ребенком анализирует программу строительства зеленого дома: рассмотрим каждый «этаж» (I, II, III этажи); определим, сколько кубиков нужно на каждый этаж и сколько – на все три этажа. Запишем на карточки; сосчитаем и запишем на карточки, сколько каких понадобится кубиков – от 0 до 3 сторон, окрашенных в нужный цвет. Обратим внимание, для каких этажей понадобится одинаковый материал (I, III этажи); подумаем, куда должны быть обращены зеленые стороны кубиков на I, II, III этажах. Заметим, что они не должны смотреть внутрь дома-куба; определим порядок складывания, присоединения кубиков для «удобного» строительства, начиная с центрального кубика, – 1), 2), 3); рассортируем кубики по количеству зеленых сторон. Проверим по карточкам, нет ли ошибки при сортировке строительного материала; отберем материал для I, II, III этажей; построим по плану. Не забываем про порядок присоединения кубиков! С помощью данной программы дети достаточно легко справляются с конструированием дома-куба. На следующих занятиях дети строят дома другого цвета – постепенно отпадает необходимость в использовании материализованной программы – она становится достоянием ребенка. Дети, усвоив такой способ решения данной конструктивной задачи, достаточно успешно переносят его на решение других подобных задач. Итак, игра с использованием четкой, последовательной, наглядно представленной программы действий позволяет достаточно успешно формировать у детей ориентировочно-исследовательскую основу действий, программирование и контроль. «Графический диктант» Методика «Графический диктант» – одна из самых показательных и чувствительных проб для проверки регуляторных возможностей ребенка 5–7 лет. С этой целью она применяется при оценке школьной готовности и на начальном этапе обучения (Венгер, Венгер, 1994). Схема ее выполнения (нарисовать рисунок определенного последовательного узора по клеточкам) задается двумя способами: по речевой инструкции или по зрительному образцу. Возможность действия по задаваемой программе предполагает определенный уровень развития графомоторных координаций и зрительно-пространственных функций. Чтобы данная методика служила для развития функций регуляции и контроля, мы сначала проверяем и формируем у детей представления о пространстве листа, клетки, движения в разных направлениях, графическое воплощение этих движений на листе в клетку (см. ниже методику развития зрительно-пространственных функций). Например, сажаем морковку (проводим линию от точки на 1, 2, 3 клетки вниз), выращиваем цветы (линии от точек вверх), забиваем гвоздики (направо – налево). Затем обозначаем направление движения с помощью стрелки и стоящего перед ней числа, которые показывают, куда и сколько «шагов» по клеткам надо сделать (рис. 2.3.2). Рис. 2.3.2. Подготовка к графическому диктанту После такой подготовки методика «Графический диктант» может служить целям формирования у детей регуляторных функций. Курс занятий предполагает развитие возможностей «считывания» самой программы и действия по ней при различных способах ее подачи. Вариантами могут служить следующие типы подачи программ: она вводится с помощью обозначений (число и стрелка) и наглядного образца первого этапа ее выполнения; задается только с помощью введенных обозначений; задается графическим образцом (узор, фигура, лабиринт), предполагаются ее анализ и составление схемы движения с помощью введенных обозначений – чисел и стрелок. Наши материалы по данной методике вошли в пособие по подготовке детей к школе (Ахутина и др., 2005), где на достаточно простом, но интересном для детей материале формируется умение действовать по программам, вводимым в виде зрительного графического образца или с помощью обозначений – число/ стрелка. Отметим, что в этих заданиях прекрасно развиваются ориентировочно-исследовательская деятельность ребенка и умение контролировать свои действия. Кроме того, дети начинают «дружить» с пространством листа, с клеткой, что очень важно на всем протяжении обучения. «Таблицы Шульте» Структурированные и неструктурированные таблицы со случайным расположением чисел легли в основу двух методик – «Школа внимания» и «Школа умножения» (Пылаева, Ахутина, 1997, 2006). Расскажем о нескольких заданиях из второй методики. Современные творческие педагоги считают, что для усвоения таблицы умножения необходимо понимание принципов ее составления, раскрытие смысла умножения и деления. Одновременно с этим они подчеркивают, что для закрепления навыков табличного умножения требуется длительная тренировка. Для того чтобы не снижалась мотивация ребенка к усвоению таблицы, тренировка должна быть разнообразной. В последние годы в этом направлении выпущено много пособий, которые делают усвоение таблицы умножения интересным (Бахтина, 2001; Куколевская, Ломова, 1997). Методика «Школа умножения» также способствует решению дидактической задачи – усвоению таблицы умножения в целом комплексе интересных для детей упражнений. Однако основная ее задача – это развитие произвольного внимания, планирования и контроля. Методика предполагает формирование действий по программе, переход от внешней, наглядно представленной программы к внутренней, от совместных действий к самостоятельным, от действий по заданным программам к творческому их составлению самими детьми. Созданию бланковых методик предшествовал анализ таблицы умножения, ее «секретов». При введении материала в различные виды упражнений учитывалась его сложность. Особое внимание было уделено организации зрительного поля: материал представлен так, чтобы облегчать или затруднять операции поиска чисел, развивать поисковые движения в горизонтальном или вертикальном направлении, рационально перемещаться по всей поверхности листа. В методике предусматривается также вариативность способов действия: предметное (с карточками-ответами), графическое (обведение, написание), поисковое (показ). Необходимым условием работы с бланковыми листами является включение соревновательных элементов, повышающих мотивацию как в группе, так и у одного ребенка: сегодня быстрее, легче, без ошибок, самостоятельно. Рассмотрим виды заданий. Обычно к моменту изучения таблицы умножения дети уже владеют счетом двойками, понятием четного числа, легко считают десятками, пятерками. Именно на этом материале целесообразно ввести различные программы работы, научить опираться на них, следовать им; ознакомить с принципом действия в структурированном и неструктурированном полях, выстраивать маршрут и т. д. Переход к несколько более сложному материалу (умножение на 3) предполагает на первом этапе такую организацию зрительного поля, которая позволяет облегчить поиск последовательности ответов. Изменение размера цифр облегчает поиск. Бланк предполагает выполнение двух заданий: показ цифр в прямом (3, 6, 9…) и обратном (30, 27, 24…) порядке по заданной программе (рис. 2.3.3). На следующем этапе работы можно сделать некоторое открытие в той части таблицы, которая, с точки зрения детей, сложна: раскрыть секрет умножения на 9. Рис. 2.3.3. Неструктурированная таблица со случайным расположением чисел Рассматривая вместе с ребенком по порядку ответы, в которых цветом или величиной маркированы десятки и единицы, обнаруживаем: характер изменения десятков имеет прямой порядок от 0 до 9, а единиц – обратный, от 9 до 0. Секрет разгадан, и дети легко сами дают по порядку все ответы умножения на 9. Они могут себя хорошо проконтролировать, если раскроют еще один секрет – сумма чисел в каждом ответе равна 9. Далее выполняем ряд упражнений, играем, закрепляем, проверяем себя (рис. 2.3.4). Рис. 2.3.4. Упражнения на отработку внимания при умножении на 9: анализ ряда, таблица Шульте, поиск маршрута, продолжение и дополнение ряда А теперь представим один из трудных видов заданий – параллельный поиск в двух таблицах Шульте, требующий распределения внимания и удержания сложной программы с переключением. Для этих заданий использован материал умножения на 2 и 4, 5 и 10, 3 и 6, 4 и 8 (рис. 2.3.5). Рис. 2.3.5. Задание «Параллельные ряды» – поиск ответов в двух таблицах Шульте Последовательность работы в этом задании может быть следующей. 1. Найти в таблице в прямом и обратном порядке ответы умножения на 2 (при ошибке – опора на программу, заданную сверху). 2. Аналогично отработать таблицу с ответами умножения на 4. 3. Выполнить параллельный поиск ответов умножения на 2 и на 4 в двух таблицах. 4. Выполнить аналогичный поиск в таблицах с другим расположением тех же чисел. 5. Построить новые таблицы. Таблицы можно использовать и для закрепления изолированных ответов (найти ответы умножения 4 х 9, 2 х 8 и т. п.). Параллельный поиск в двух таблицах позволяет также одновременно отрабатывать и закреплять понятие о числах, в два раза больших или меньших. Вариативность методических приемов в заданиях зависит от данных нейропсихологического исследования ребенка, зоны его ближайшего развития, а также от степени усвоения материала таблицы умножения. Положительный эффект применения данной методики имел место не только при отставании развития функций программирования и контроля, но и у детей с трудностями становления зрительно-пространственных функций и дискалькулией (трудностями счета). Литература 1. Ахутина Т. В, Манелис Н. Г., Пылаева Н. М., Хотылева Т. Ю. Скоро школа. Путешествие с Бимом и Бомом в страну Математику. – М., 2006. 2. Бахтина Е. В. Таблица умножения. – М., 2001. 3. Венгер Л. А., Венгер А. Л. Готов ли ваш ребенок к школе? – М., 1994. 4. Куколевская Г. И., Ломова Н. В. Математика. Рабочая тетрадь. Учим таблицу умножения. – М., 1997. 5. Лобные доли и регуляция психических процессов / Под ред. А. Р. Лурия, Е. Д. Хомской. – М., 1966. 6. Лурия А. Р. Высшие корковые функции человека. – М., 1969. 7. Микадзе Ю. В. Нейропсихологическая диагностика способности к обучению: Хрестоматия по нейропсихологии. – М., 1999. 8. Никитин Б. П., Никитина Л. А. Развивающие игры для детей. – М., 1990.
9. Пылаева Н. М, Ахутина Т. В. Школа внимания. Методика развития и коррекции внимания у детей 5–7 лет: Методическое пособие и дидактический материал. – М., 1997, 2001, 2003, 2004. 10. Пылаева Н. М., Ахутина Т. В. Школа умножения. Методика развития внимания у детей 7–9 лет: Методические указания и рабочая тетрадь. – М., 2006. 11. Семенович А. В. Нейропсихологическая диагностика и коррекция в детском возрасте. – М., 2002. Глава 4 Популярное:
|
Последнее изменение этой страницы: 2017-03-03; Просмотров: 1014; Нарушение авторского права страницы