Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тема: «Матрицы, матричный метод решения СЛУ».



Матрицей размера m´ n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать матрицу в виде

A =

или сокращенно в виде A = (ai j) (i = ; j = ). Числа ai j, составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй – на номер столбца. Две матрицы A = (ai j) и B = (bi j) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если ai j = bi j.

 

Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В.

Виды матриц.

 

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. Матрица размера m´ n, все элементы которой равны нулю, называются нулевой матрицей и обозначается через 0.

Элементы матрицы с одинаковыми индексами называютэлементами главной диагонали.

Если число строк матрицы равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n.

Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:

.

Если все элементы ai i диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:

E = .

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю.

Транспонированием называется такое преобразование матрицы, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Пусть дана матрица (4.1). Переставим строки со столбцами. Получим матрицу

AT = ,

которая будет транспонированной по отношению к матрице А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

 

Действие над матрицами.

Произведением матрицы А на число l называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением на число l: l A = (l ai j).

Т.е. для того чтобы умножить матрицу A на число l нужно каждый элемент матрицы A умножить на это число.

 

Суммой двух матриц А = (ai j) и B = (bi j) одного размера называется матрица C = (ci j) того же размера, элементы которой определяются по формуле ci j = ai j + bi j.

Т.е. чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах.

Или:

=

ПроизведениеАВ матрицы А на матрицу В определяется в предположении, что число столбцов матрицы А равно числу строк матрицы В.

 

Произведением двух матриц А = (ai j) и B = (bj k), где i = , j= , k= , заданных в определенном порядке АВ, называется матрица С = (c i k), элементы которой определяются по следующему правилу:

c i k = ai 1 b1 k + ai 2 b2 k +… + ai m bm k = ai s bs k.

Иначе говоря, элементы матрицы-произведения определяются следующим образом: элемент i-й строки и k-го столбца матрицы С равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы k-го столбца матрицы В.

 

Т.е. перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы.

 

Обратная матрица.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если D = 0.

Понятие обратной матрицы вводится только для квадратных матриц.

Если A – квадратная матрица, то обратной для неё матрицей называется матрица, обозначаемая A-1 и удовлетворяющая условию .

Справедлива следующая теорема:

Теорема. Для того чтобы квадратная матрица A имела обратную, необходимо и достаточно, чтобы её определитель был отличен от нуля.

находится следующим образом

,

где Aij – алгебраические дополнения элементов aij данной матрицы A.

 

Итак, чтобы найти обратную матрицу нужно:

1. Найти определитель матрицы A.

2. Найти алгебраические дополнения Aij всех элементов матрицы A и составить матрицу, элементами которой являются числа Aij.

3. Найти матрицу, транспонированную полученной матрице А, и умножить её на – это и будет обратная матрица.

Аналогично для матриц второго порядка, обратной будет следующая матрица .

 

Матричный метод решения СЛУ

Рассмотрим систему, состоящую из n линейных уравнений с n неизвестными:

 

Вводя матрицу коэффициентов перед неизвестными А, матрицу-столбец неизвестных Х и матрицу-столбец свободных членов В, систему можно переписать в матричной форме:

 

Предположим, что матрица А - неособенная, т.е. ‌ А ‌ ≠ 0. Решим матричное уравнение, а следовательно и систему (4) с помощью обратной матрицы А,

 

где, А = * Ặ =>

X = * Ặ =>

 

Для системы трех уравнений с тремя неизвестными:

 

 

решение запишется в виде:

 

Лекция №3.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 445; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь