Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Дополнения к фильтру Винера
Классификация задач фильтрации: - линейная-нелинейная (как динамическая система, так и сам фильтр); - стационарная-нестационарная; - представление фильтра ядром интегрального оператора (импульсной передаточной функцией (ИПФ)), передаточной функцией (частотной), алгоритмом на основе системы обыкновенных дифференциальных уравнений в пространстве состояний. Мы рассматриваем только линейную задачу фильтрации (линейная система, линейный фильтр). Фильтр Колмогорова-Винера даёт решение в случае стационарных эргодических процессов в виде частотной передаточной функции или ИПФ. Фильтр Калмана-Бьюси – в виде алгоритма на основе системы обыкновенных дифференциальных уравнений в пространстве состояний. Фильтр Винера был обобщён в следующих направлениях: векторный случай (спектральные матрицы), метод неопределённых коэффициентов для нестационарного случая. Существуют решения, в том числе для нелинейных систем и нелинейных фильтров в виде уравнений Вольтерра, функциональных рядов, спектральных матриц.
Критерии оптимальности. И для фильтра Винера и для фильтра Калмана мы используем критерий среднеквадратичной ошибки, который приводит к результатам, аналогичным случаю детерминированных систем. Также аналогично, можно рассмотреть вместо задачи оптимальной оценки случайного сигнала (процесса), задачу оптимального управления (я ранее выражал скепсис по этому поводу, но был неправ – в классических книгах существует такая постановка, и мы её далее рассмотрим). В фильтре Винера вся информации должна быть задана априорна. В случае фильтра Калмана – её можно получать по мере поступления. Это большой плюс. В задачах фильтрации (оценки параметров или выбора гипотез также, это уже нелинейная фильтрация) можно использовать также формулу Байеса и отвечающей ей критерий максимального правдоподобия. Общепринятая достаточно универсальная идеология фильтрации использует байесовский принцип. Ее применение позволяет, по крайней мере, теоретически, создавать как линейные, так и нелинейные алгоритмы фильтрации. Кроме того, этот принцип помогает выяснить, при каких условиях линейные процедуры фильтрации приводят к наивысшему качеству обработки и, следовательно, являются абсолютно оптимальными. Отметим, однако, с самого начала основные недостатки байесовской фильтрации. Первый является общим для байесовских методов вообще и заключается в очень высоких требованиях к объему и характеру данных, содержащихся в математических моделях сигналов и помех, удовлетворить которым на практике удается далеко не всегда. Полагаем, что на входе фильтра действует сигнал , (*) где и - полезный сигнал и помеха, а - функция, описывающая их взаимодействие. При байесовском методе считается, что сигнал и помеха - случайные процессы (случайные двумерные поля) с известными законами распределения вероятностей. Пусть - вектор, элементы которого - все отсчетов, образующих кадр изображения, а -их совместное распределение. Примем для простоты, что помеха и сигнал независимы, а распределение вектора помехи равно . Воспользовавшись формулой Байеса, запишем апостериорное распределение вероятностей (АРВ) : , (**) куда входит распределение наблюдаемых данных и условное распределение - называемое функцией правдоподобия. Смысл выражения (**) заключается в том, что оно дает возможность вычислить в устройстве обработки распределение вероятностей полезного сигнала, располагая входными данными и опираясь на вероятностную модель как самого полезного сигнала, так и наблюдаемых данных. АРВ является аккумулятором всех доступных сведений о полезном сигнале, которые содержатся в , а формула (**) указывает способ извлечения этих сведений. Задачей байесовского фильтра является вычисление распределения вероятностей . Несмотря на сложность байесовских процедур для фильтрации даже одномерных сигналов, были получены блестящие решения проблемы, основанные на использовании Марковских моделей сигналов и помех.
О преобразовании Лапласа и Фурье в фильтре Винера. Фильтр Винера основан на преобразованиях Лапласа и Фурье. Прежде всего, напомним не очень строго определение преобразования Лапласа F ( p ) для функции f ( t ): . (1) Область определения преобразования Лапласа ограничивается функциями: - ; - . В технических приложениях первому условию равенства 0 сигнала при отрицательном времени соответствует тому, что вся информация о прошлом содержится в начальных условиях при t = 0. Второе условие требует принадлежности сигнала классу суммируемых функций. Оно будет заведомо выполняться, если . Такое минимальное называется показателем степени роста. Теорема 1 (об аналитичности преобразования Лапласа). Если Re p > , то интеграл существует и определяет аналитическую функцию для таких p (не совсем точно). Обратное преобразование Лапласа: . (2) Оно даёт первоначальную функцию (которая здесь называется оригиналом), если . В каких случаях оно существует и как его находить? Этот вопрос имеет важнейшее значение для фильтра Винера. Теорема 2 (о существовании обратного преобразования Лапласа для аналитических функций). Для аналитической при Re p > функции аргумента p существует интеграл (2) обратного преобразования Лапласа. В том числе, если мы сделали преобразование Лапласа для соответствующей функции, то получили аналитическую функцию для Re p > и, выбрав , получим этот оригинал обратно. Теорема 3 (разложения). Если F( p) аналитическая в , т.е. имеет разложение ( – функция Хевисайда) , то . Теорема 4 (разложения). Если F( p) мероморфная (имеем особенности только в виде полюсов, в конечном количестве в ограниченной области), аналитическая в , т.е. , для каждого a . то . Теорема 5 (разложения). При ограниченном числе полюсов – получается правильная дробно-рациональная функция . И её можно разложить на простейшие дроби (с учётом кратности корней) и по таблице найти обратное преобразование Лапласа: . Для простых полюсов: .
Устойчивая система. Для устойчивости системы с импульсной передаточной функцией (ИПФ) K ( t ) необходимо и достаточно: . В этом случае, для ограниченного входного сигнала будет т.е. будет существовать выходной сигнал: . Сделав преобразование Фурье над (ИПФ) K ( t ) получаем необходимое и достаточное условие в виде отрицательности вещественной части нулей частотной передаточной функции . Сделаем заключительное замечание, относящееся к строгой применимости полученной формулы: линейный фильтр является оптимальным для нормальных случайных процессов, иначе – решение принадлежит к классу нелинейных систем.
Теперь применяя эту лемму о факторизации к многочленам в числителе и знаменателе спектральной плотности , получаем факторизацию спектральной плотности . При этом если дисперсия , то – устойчивый многочлен, а – кроме корней в левой полуплоскости может иметь только корни на мнимой оси. А именно, из ограниченности дисперсии, следует отсутствие полюсов (т.е. корней знаменателя) на мнимой оси. . (*) Согласно формуле (1.5.3) для установившейся реакции выходного сигнала . И дисперсия выходного процесса равна . В случае отсутствия кратных корней дисперсия равна сумме вычетов: . (**) Заметим, что из-за устойчивости системы, а из-за ограниченности интеграла (*) для дисперсии. Таким образом, на полуокружности бесконечно большого радиуса, охватывающей левую полуплоскость, подынтегральное выражение убывает не медленней, чем , а, следовательно, , где во втором интеграле интегрирование ведётся по контуру, охватывающему левую полуплоскость. Значение такого интеграла равно сумме вычетов подынтегрального выражения во всех полюсах, лежащих внутри этого контура, что и приводит к равенству (**). Пример 3.3. ППП Далее надо ещё: 1) проекция в гильбертовом пространстве (синяя книга Леоденса), 2) векторное уравнение Винера-Хопфа и фильтр Винера (синяя книга Леоденса), 3) метод неопределённых коэффициентов (синяя книга Леоденса), 4) книги Первозванского, Леоденса, Венгерова, … |
Последнее изменение этой страницы: 2019-03-22; Просмотров: 279; Нарушение авторского права страницы