Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Элементы симметрии додекаэдра



  • Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер.
  • Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Интересные факты

  • Форму, близкую к додекаэдру имеет описанная Эрнстом Геккелем в 1887 году радиолярия Circorrhegma dodecahedra[10].
  • В 2003 году, при анализе данных космического аппарата WMAP, была выдвинута гипотеза, что Вселенная представляет собой додекаэдрическое пространство Пуанкаре[11][12][13].

В культуре

  • Додекаэдр применяется как генератор случайных чисел (вместе с другими костями) в настольных ролевых играх, и обозначается при этом d12 (dice — кости).
  • Изготавливаются настольные календари в форме додекаэдра из бумаги, где каждый из двенадцати месяцев расположен на одной из граней.
  • В игре Пентакор мир представлен в виде этой геометрической фигуры.
  • В играх " Соник 3" и " Соник и Кнаклз" вид додекаэдра имеют изумруды хаоса.

Икосаэдр

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 сентября 2013; проверки требуют 15 правок.

 

Икосаэдр
Тип Правильный многогранник
Грань Правильный треугольник
Граней
Рёбер
Вершин
Граней при вершине
Группа симметрии Икосаэдрическая (Ih)
Двойственный многогранник додекаэдр

Развертка икосаэдра

Икосаэдр и его описанная сфера

Икоса́ эдр (от др.-греч. ε ἴ κ ο σ ι «двадцать»; ἕ δ ρ ο ν «сидение», «основание») — правильный выпуклый многогранник, двадцатигранник [1], одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм.

Содержание

  • 1 История
  • 2 Основные формулы
  • 3 Свойства
  • 4 Усечённый икосаэдр
  • 5 В мире
    • 5.1 Тела в виде икосаэдра
  • 6 См. также
  • 7 Примечания
  • 8 Литература

История

Евклид в предложении 16 книги XIII «Начал» занимается построением икосаэдра, получая сначала два правильных пятиугольника, лежащих в двух параллельных плоскостях — из десяти его вершин, и затем — две оставшиеся противоположные друг другу вершины[2][3]: 127-131. Папп Александрийский в «Математическом собрании» занимается построением икосаэдра, вписанного в данную сферу, попутно доказывая, что двенадцать его вершин лежат в четырех параллельных плоскостях, образуя в них четыре правильных треугольника[4][3]: 315-316.

Основные формулы

Площадь поверхности S, объём V икосаэдра с длиной ребра a, а также радиусы вписанной и описанной сфер вычисляются по формулам:

Площадь:

Объём:

Радиус вписанной сферы[5]:

Радиус описанной сферы[5]:

Свойства

  • Все двенадцать вершин икосаэдра лежат по три в четырёх параллельных плоскостях, образуя в каждой из них правильный треугольник.
  • Десять вершин икосаэдра лежат в двух параллельных плоскостях, образуя в них два правильных пятиугольника, а остальные две — противоположны друг другу и лежат на двух концах диаметра описанной сферы, перпендикулярного этим плоскостям.
  • Икосаэдр можно вписать в куб, при этом шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба
  • В икосаэдр может быть вписан тетраэдр, так что четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
  • Икосаэдр можно вписать в додекаэдр, при этом вершины икосаэдра будут совмещены с центрами граней додекаэдра.
  • В икосаэдр можно вписать додекаэдр с совмещением вершин додекаэдра и центров граней икосаэдра.
  • Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12× 5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32), а число рёбер возрастает до 30+12× 5=90.
  • Собрать модель икосаэдра можно при помощи 20 тетраэдров.
  • Невозможно собрать икосаэдр из правильных тетраэдров, так как радиус описанной сферы вокруг икосаэдра, соответственно и длина бокового ребра (от вершины до центра такой сборки) тетраэдра меньше ребра самого икосаэдра.

Усечённый икосаэдр

Основная статья: Усечённый икосаэдр

Молекула фуллерена C60 — усечённый икосаэдр

Усечённый икосаэдр — многогранник, состоящий из 12 правильных пятиугольников и 20 правильных шестиугольников. Имеет икосаэдрический тип симметрии. По сути футбольный мяч имеет форму не шара, а усечённого икосаэдра.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 2203; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь