Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные подходы к оценке коэффициентов эконометрической модели, содержащей лаговые зависимые переменные



Из материала предыдущего раздела вытекает, что эконометрические модели, содержащие в правой части лаговые зависимые переменные, неоднородны по своим свойствам. В основном это обусловлено появлением специфических свойств у ошибки модели, выражаемых через особенности ее автокорреляционной функции и корреляционных взаимосвязей с независимыми (лаговыми) переменными. В литературе, посвященной проблемам эконометрического моделирования, выделяют три основных варианта возможных свойств этой ошибки.

Вариант 1. Ошибка модели et по своим свойствам является стационарным процессом второго порядка с нулевым математическим ожиданием, постоянной дисперсией и нулевыми автокорреляциями всех порядков. Это означает, что ее ковариационная матрица удовлетворяет соотношению Cov ( e )=se2 E.

Как следует из раздела 2.1, это предположение позволяет использовать для оценки параметров модели (5.1) обыкновенный МНК, если только не возникает сложностей с обращением матрицы ( X ¢ X ) и возможным появлением смещения у получаемых оценок из-за наличия корреляционных взаимосвязей между некоторыми независимыми факторами – лаговыми переменными и ошибкой. Эти взаимосвязи могут быть обусловлены тем, что переменная уt может иметь сильную автокорреляционную зависимость (может быть даже только первого порядка). В результате этого столбцы матрицы ( X ¢ X ), сформированные рядами у t–1 и у t–2, у t–2и у t–3 и т. д., будут характеризоваться сильной корреляционной взаимозависимостью, следствием которой является плохая ее обратимость. Этот негативный эффект часто проявляется, когда число лаговых переменных не меньше двух. При этом обратимость матрицы ( X ¢ X ) ухудшается с ростом числа таких переменных.

Смещенность оценок может иметь место даже при единственной лаговой переменной уt–1. Причем в малых выборках, т.е. при небольшом количестве измерений Т, она усиливается. Дело в том, что поскольку корреляция между зависимой переменной уt и ошибкой et достаточно значительная, то в условиях сильной автокорреляционной зависимости между рядами у t и у t–1 будет наблюдаться и значительная взаимосвязь между рядами у t–1 и e t, т. е. Соv ( у t–1, e t)¹ 0.

Вместе с тем, оценки коэффициентов модели (5.1), получаемые с помощью обыкновенного МНК, являются эффективными в силу выполнения условия Cov ( e )=se2 E. Поэтому на практике все же рекомендуется при их получении использовать именно этот метод (или его модификации, позволяющие смягчить проблему плохой обратимости матрицы ( Х ¢ Х )–1), мирясь со смещением оценок параметров, тем более что с ростом числа измерений величина смещения обычно стремится к нулю.

Вариант 2. Ошибка модели является аддитивной функцией текущего и предшествующего значений “белого шума” как это имеет место в выражениях (5.7) и (5.16). Представим такую функцию как и в разделе 5.1 в следующем виде:

иt=etbe t–1, (5.21)

 

где b – априорно неизвестный коэффициент, 0< b£ 1, et – значение случайного процесса типа “белого шума” с нулевым средним, конечной дисперсией и нулевыми коэффициентами автокорреляции, начиная с первого.

В разделе 5.1 было отмечено, что в этом случае ковариационная матрица ошибки модели иt отлична от диагональной, т. е. Cov ( и sи2 E. Ее вид определен выражением (5.11). Вследствие этого применение обыкновенного метода наименьших квадратов при определении параметров такой модели ведет к получению неэффективных оценок.

Вторая проблема, которая также имеет место в этом случае, заключается в том, что обыкновенный МНК дает смещенные оценки параметров модели в силу наличия корреляционной взаимосвязи между переменной у t–1, входящей в правую часть модели, и одновременной составляющей ошибки e t–1. Напомним, что вследствие такой зависимости математическое ожидание ошибки вектора a, определяемой выражением D a =( X ¢ X )–1 X ¢ и, не равно нулю, а является функцией от ковариации столбца у t–1, входящего в матрицу X, и столбца e t–1, поскольку в силу отмеченной зависимости Cov ( у t–1, e t–1)¹ 0 (см. раздел 3.3).

Здесь следует отметить, что величина смещения оценки параметров оказывается тесно связанной с составом и количеством независимых переменных, входящих в правую часть эконометрической модели. Результаты эконометрических исследований этой проблемы подтверждают, что присутствие в модели нескольких лаговых зависимых переменных, т. е. уt–1, уt–2, уt–3,... усиливает смещение оценок ее параметров и, наоборот, присутствие независимых переменных х1t, х2t,... способствует уменьшению абсолютных величин смещений оценок.

В общем случае проблема смещения оценок оказывается более сложной, чем проблема потери этими оценками свойства эффективности. Для ее решения обычно рекомендуется использовать подход, связанный с заменой в матрице Х столбцов значений факторов, вызывающих смещение, на столбцы значений так называемых инструментальных переменных (см. раздел 3.3).

Инструментальная переменная zt, замещающая в эконометрической модели фактор, коррелирующий с ошибкой, должна обладать следующими двумя свойствами. Во-первых, она должна иметь сильную корреляционную связь с заменяемым ею фактором, и, во-вторых, быть слабо связанной с ошибкой модели иt. Для моделей типа (5.7) и (5.16), например, необходимо найти инструментальную переменную, замещающую лаговый фактор у t–1, т. е. переменную zt–1, обладающую двумя отмеченными свойствами.

Проблемы использования инструментальных переменных при оценке коэффициентов эконометрических моделей рассмотрены в разделе 3.3, а также в главе VIII.

Проблема получения эффективных оценок коэффициентов моделей с лаговыми зависимыми переменными типа (5.7) и (5.16) при известном значении коэффициента b, а, следовательно, и корреляционной матрице вектора ошибки иt, определенной, исходя из выражения (5.11), как

 

W =

 

могла бы быть решена с использованием обобщенного МНК.

Однако на практике значения b, а, следовательно, и значение , характеризующее коэффициент автокорреляции ошибки иt, является неизвестным. Очевидно, что для модели (5.7) и (5.16) оно удовлетворяет соотношению –1/2< l< 0.

В этом случае для оценки параметров этих моделей можно предложить один из подходов, связанных с использованием двухшагового МНК, которые были рассмотрены в главе III.

Вариант 3. Значение ошибки модели в момент t оказывается связанным со значением в момент t–1. Иными словами, ряд ошибки модели et удовлетворяет следующему соотношению:

et=re t–1+xt , (5.23)

 

где½ r½ < 1 и xt ~N(0, se2).

Этот вариант не вытекает из рассмотренных в главе V моделей. Однако он достаточно часто встречается в практических исследованиях (см. раздел 3.1).

Проблемы оценки параметров моделей с лаговыми зависимыми переменными при условии (5.23) возникают вследствие совместного действия двух причин – наличия корреляционной связи между независимым фактором уt–1и ошибкой иt и автокорреляционной зависимостью самой ошибки.

Как показано в разделе 3.1 (см. выражение (3.27)), корреляционная матрица вектора ошибки при выполнении условия (5.23) определяется следующим выражением:

 

S =

 

Даже при известном значении коэффициента автокорреляции r с помощью процедур, основанных на использовании обобщенного МНК, можно было бы получить достаточно качественные (эффективные) оценки параметров эконометрической модели (см. раздел 3.2). Однако использование этого метода напрямую приводит к получению смещенных оценок.

Наоборот, использование, например, инструментальных переменных (речь идет о замене независимого фактора yt–1на инструментальную переменную zt–1), как это было показано выше в этом разделе, могло бы уменьшить или вообще устранить смещение в оценках параметров модели. Но полученные с их помощью оценки не будут эффективными.

В сложившихся условиях для получения несмещенных и эффективных оценок параметров эконометрической модели с лаговыми зависимыми переменными в качестве универсального подхода рекомендуется достаточно громоздкая трехэтапная процедура, которая сочетает в себе подходы, связанные с использованием и инструментальных переменных, и обобщенного МНК. Не снижая общности, рассмотрим особенности ее применения на примере достаточно простой модели с одной лаговой переменной уt–1и независимым фактором хt. Она может быть записана в следующем виде:

 

 

1. На первом шаге этой процедуры с использованием вместо у t–1инструментальной переменной zt можно получить несмещенные оценки коэффициентов уравнения (5.24) на основе следующего выражения:

 

a =( Z ¢ X )–1 Z ¢ y, (5.25)

 

где матрицы Z и Х имеют следующий вид:

 
 


Z = Х =

z t–1– значения инструментальной переменной, замещающей лаговую переменную у t–1, t=1, 2,... Т.

2. На втором шаге процедуры определяются экспериментальные значения остатков модели (5.24)

 

 

На основании ряда et, t=1, 2,... Т можно получить оценку коэффициента автокорреляции ошибки первого порядка r1. Для ее расчета рекомендуется использовать формулу, учитывающую поправку на смещение оценки:

 

 

3. На основании значений r формулируют корреляционную матрицу остатков модели (5.24), которая в данном случае будет иметь следующий вид:

 
 


S =

 

Вектор оценок коэффициентов модели (5.24) в этом случае определяется на основании обобщенного метода наименьших квадратов

 

a =( Х ¢ S –1 X )–1 Х ¢ S –1 y, (5.28)

 

где матрица Х имеет тот же вид, что и в выражении (5.25).

Изложенная процедура позволяет получить состоятельные оценки параметров модели с лаговыми зависимыми переменными в правой части. Однако нельзя утверждать, что они будут “абсолютно” эффективными, поскольку при формировании матрицы Z использовалась оценка r истинного значения первого коэффициента автокорреляции остатков r, которая, в свою очередь, определялась на основе оценок значений ошибки et .


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 882; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.033 с.)
Главная | Случайная страница | Обратная связь