Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Схемы создания напора и основное оборудование ГЭС
Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:
Мощность ГЭС зависит от напора и расхода воды, а также от КПД (коэффициента полезного действия) используемых турбин и генераторов. Из-за того, что по природным причинам расход воды постоянно меняется, в зависимости от сезона, а также еще по ряду других причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции. В зависимости от расхода и напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных - ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных - поворотнолопастные турбины в железобетонных или стальных камерах. Принцип работы всех видов турбин одинаков - вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на генератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами - стальными или железобетонными, и рассчитаны на различный напор воды. В состав ГЭС, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое. Ценность ГЭС состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций. Особенности гидроэлектростанций (плюсы и минусы)
21 В энергосистеме ГЭС обычно используется для выработки электроэнергии, покрытия графика нагрузки, особенно его пиковой части, регулирования частоты электрического тока в системе, в качестве резерва и для выработки реактивной мощности в режиме синхронного компенсатора. Режим работы ГЭС в энергосистеме зависит от расхода воды, напора, объема водохранилища, потребностей энергосистемы, ограничений по верхнему и нижнему бьефу. Агрегаты ГЭС по техническим условиям могут быстро включаться, набирать нагрузку и останавливаться. Причем включение и выключение агрегатов, регулирование нагрузки могут происходить автоматически при изменении частоты электрического тока в энергосистеме. Для включения остановленного агрегата и набора полной нагрузки обычно требуется всего 1—2 мин. Мощность на валу гидротурбины (кВт) определяется как где Qт — расход воды через гидротурбину, м3/с; Нт — напор турбины, м; hт — коэффициент полезного действия (КПД) турбины. Напор турбины равен: Солнечная энергетика Солнечная энергетика — направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии[1] и является «экологически чистой», то есть не производящей вредных отходов во время активной фазы использования[2]. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии. Достоинства
Недостатки
В 2013 году глобально было установлено 39 ГВт. фотоэлектрических мощностей. В результате общая мощность фотоэлектрических установок оценивается в 139 ГВт.[7] Лидером по установленной мощности является Европа.[8] Среди стран лидером является Китай. По совокупной мощности на душу населения лидер — Германия. В 2012 году общая мощность мировых гелиоэнергетических установок выросла на 31 ГВт, превысив 100 ГВт. На начало 2010 года общая мировая мощность фотоэлементной солнечной энергетики составила только около 0, 1 % общемировой генерации электроэнергии[9]. В 1985 году все установленные мощности мира составляли 21 МВт. Производство фотоэлементов в мире в 2005 году составляло 1656 МВт. Крупнейшие производители фотоэлементов в 2012 году[10]:
Экологические проблемы При производстве фотоэлементов уровень загрязнений не превышает допустимого уровня для предприятий микроэлектронной промышленности. Современные фотоэлементы имеют срок службы 30—50 лет. Применение кадмия, связанного в соединениях, при производстве некоторых типов фотоэлементов с целью повышения эффективности преобразования, ставит сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения, хотя такие элементы имеют незначительное распространение, и соединениям кадмия при современном производстве уже найдена достойная замена.В последнее время активно развивается производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния, по отношению к массе подложки, на которую наносятся тонкие плёнки. Из-за малого расхода материалов на поглощающий слой, здесь кремния, тонкоплёночные кремниевые фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность и неустранимую деградацию характеристик во времени. Кроме того, развивается производство тонкоплёночных фотоэлементов на других полупроводниковых материалах, в частности CIS и CIGS, достойных конкурентов кремнию. Так, например, в 2005 году компания «Shell» приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству монокристаллических (нетонкоплёночных) кремниевых фотоэлектрических элементов.Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. Это приводит к изменению теплового баланса, влажности, направления ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Применение низкокипящих жидкостей и неизбежные их утечки в солнечных энергетических системах во время длительной эксплуатации могут привести к значительному загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами. 23 Прили́ вная электроста́ нция (ПЭС) — особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 18 метров.Существует мнение, что работа приливных электростанций тормозит вращение Земли, что может привести к негативным экологическим последствиям[1]. Однако ввиду колоссальной массы Земли кинетическая энергия ее вращения (~1029 Дж) настолько велика, что работа приливных станций суммарной мощностью 1000 ГВт будет увеличивать длительность суток лишь на ~10− 14 секунды в год, что на 9 порядков меньше естественного приливного торможения (~2·10− 5 с в год).Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция.В СССР (России) c 1968 года действует экспериментальная Кислогубская ПЭС в Кислой губе на побережье Баренцева моря. На 2009 год её мощность составляла 1, 7 МВт. На этапе проектирования находится Северная ПЭС в губе Долгая-Восточная на Кольском полуострове мощностью 12 МВт. В советское время также были разработаны проекты строительства ПЭС в Мезенской губе (мощность 11 000 МВт) на Белом море, Пенжинской губе и Тугурском заливе (мощностью 8000 МВт) на Охотском море, в настоящее время статус этих проектов неизвестен, за исключением Мезенской ПЭС, включённой в инвестпроект РАО «ЕЭС». Пенжинская ПЭС могла бы стать самой мощной электростанцией в мире — проектная мощность 87 ГВт.Существуют ПЭС и за рубежом — во Франции, Великобритании, Канаде, Китае, Индии, США и других странах. ПЭС «Ля Ранс», построенная в эстуарии реки Ранс (Северная Бретань) имеет самую большую в мире плотину, ее длина составляет 800 м. Плотина также служит мостом, по которому проходит высокоскоростная трасса, соединяющая города Сен-Мало и Динард. Мощность станции составляет 240 МВт[2].Другие известные станции: южнокорейская Сихвинская ПЭС (мощность 254 МВт[3]), британская СиДжен, канадская ПЭС Аннаполис и норвежская ПЭС Хаммерфест.Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками — высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в составе энергосистемы, располагающей достаточной мощностью электростанций других типов. Популярное:
|
Последнее изменение этой страницы: 2016-04-10; Просмотров: 1821; Нарушение авторского права страницы