Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Построение модели олигополии Курно на основе изопрофит и функций реакции



В состоянии равновесия каждый из дуополистов Курно покрывает своей продукцией треть рыночного спроса при единой цене. Покрывая совместно две трети рыночного спроса, каждый дуополист обеспечивает максимум своей, но не отраслевойприбыли. Они могли бы, по-видимому, увеличить свою общую прибыль, если бы, поняв ошибочность своих предположений относительно заданности объемов выпуска друг друга, вступили бы в явный или тайный сговор и действовали как единая монополия (легально или нелегально). В этом случае рынок оказался бы поделенным пополам, так что каждый из них покрывал бы по четверти (вместо трети) рыночного спроса по прибылемаксимизирующей цене.

Курно неоднократно упрекали за наивность его модели дуополии. Прежде всего дуополисты не делают никаких выводов из ошибочности своих предположений относительно реакции соперников. Кроме того, модель Курно закрыта, количество предприятий с самого начала ограничено и не меняется в ходе движения к равновесию. Модель ничего не говорит о возможной продолжительности этого движения. Нереалистичным представляется и допущение о нулевых операционных затратах.

Некоторые из этих " врожденных" недостатков (по сути ≈ упрощений) могут быть элиминированы при включении в модель Курно так называемых кривых реагирования. Однако, прежде чем включить их в модель Курно, целесообразно остановиться на важной промежуточной характеристике ≈ изопрофитах, или кривых равной прибыли.

В широком смысле изопрофитами называют множество комбинаций двух или более независимых переменных функции прибыли, обеспечивающих одну и ту же сумму прибыли. В модели дуополии Курно иэопрофита, или кривая равной прибыли дуополиста 1, ≈ это множество точек в пространстве выпусков (q1, q2), соответствующих комбинациям (наборам) выпусков обоих дуополиетов, обеспечивающих дуополисту 1 один и тот же уровень прибыли. Соответственно изопрофита дуополиста 2 ≈ это множество точек в том же пространстве, соответствующих комбинациям (наборам) выпусков q1 и q2, обеспечивающих одну и ту же прибыль дуополисту 2. Семейства таких кривых равной прибыли, или изопрофит дуополиетов 1 (p11, p21, p31) и 2 (p12, p22, p32), представлены соответственно на рис. 11.2, а и 11.2, б,

Перечислим кратко основные характеристики и свойства изопрофит.

1. Вдоль изопрофиты величина прибыли дуополиста неизменна. Так, например, вдоль изопрофиты p21 (рис. 11.2, о) p1 = j1(q1, q2) = const, а вдоль иэопрофиты p12 (рис. 11.2, 6) p2 =j2(q1, q2) = const.

2. Изопрофиты вогнуты к осям, на которых отображается выпуск того дуополиста, чья изопрофита представлена на рисунке. Так, изопрофиты дуополиста 1 вогнуты относительно оси его выпуска. Такая форма изопрофиты показывает, как дуополист 1 может реагировать на принятое дуополистом 2 решение о величине выпуска с тем, чтобы его уровень прибыли не изменился.

3. Чем дальше отстоит изопрофита от оси выпуска данного олигополиста, тем меньший уровень прибыли она отображает. И наоборот, чем ближе лежит изопрофита к оси выпуска данного дуополиста, тем большему уровню прибыли она соответствует.

4. Для любого заданного выпуска олигополиста 2 существует единственный уровень выпуска олигополиста 1, максимизирующий прибыль последнего. Для дуополиста 1 такой выпуск определяется (при данном выпуске дуополиста 2) высшей точкой на низшей из доступных ему изопрофит.

6. Высшие точки изопрофит дуополиста 1 смещены влево, так что, соединив их одной линией, мы получим кривую реагирования (англ, reaction curve). На рис. 11.2, a R1(q2) ≈ кривая реагирования дуополиста 1 на величину выпуска, предложенного дуополистом 2, a К2(q1) на рис. 11.2, б ≈ кривая реагирования дуополиста 2 на величину выпуска, предложенного дуополистом 1.

Кривые реагирования ≈ это множества точек наивысшей прибыли, которую может получить один из дуополиетов при данной величине выпуска другого. Множества этих точек называют кривыми реагирования, поскольку они указывают на то, как один из дуополиетов, выбирая величину своего выпуска, qi, будет реагировать на решение другого дуополиста относительно величины своего выпуска, qj(ij). Нередко, особенно в теоретике-игровых моделях олигополии, кривые реагирования называют кривыми наилучшего ответа (англ, best response). Точка пересечения кривых реагирования обоих дуополиетов, совмещенных в одном двухмерном пространстве выпусков, определяет равновесие Курно.

Проведем теперь более строгий аналитический вывод равновесия Курно, отказавшись от ряда сделанных ранее " наивных" допущений: квазидинамического характера приближения к равновесию путем серии последовательных шагов и нулевых операционных затрат.

Положим, что каждый дуополист (во всех отношениях идентичный сопернику) стремится к максимизации своей прибыли, исходя из предположения, что другой дуополист не будет изменять выпуска, каким бы ни был его собственный выпуск. Иными словами, примем, что предположительные вариации каждого имеют нулевую оценку. Допустим, что обратная функция рыночного спроса линейна:

P = a - bQ, (11.6)

где Q = q1 + q2. (11.7)

Подставив (11.7) в (11.6), получим

P = a - b(q1 + q2). (11.6*)

Тогда прибыли дуополистов можно представить как разности между выручкой и затратами на выпуск каждого из них:

p1 =TR1 - cq1 = Pq1 - cq1, (11.8)
p2 = TR2 - cq2 = Pq2 - cq2

Подставив в правые части (11.8) значение Р из (11.6*), получим

p1 = aq1 - bq12 - bq1q2 - cq1, (11.9)

p2 = aq2 - bq22 - bq1q2 - cq2. (11.9*)

Условием максимизации прибылей дуополистов будет равенство нулю первых производных уравнений (11.9), (11.9*):

dp1/dq1 = a - 2bq1 - bq2 - c = 0, (11.10)

dp2/dq2 = a - 2bq2 - bq1 - c = 0. (11.10*)

Уравнения (11.10), (11.10*) могут быть переписаны так:

2bq1 + bq2 + c = a, (11.11)

2bq2 + bq1 + c = a. (11.11*)

Откуда после несложных преобразований получим

q1 = (a - c)/2b √ 1/2 q2, (11.12)

q2 = (a - c)/2b - 1/2 q1. (11.12*)

Это и есть уравнения кривых реагирования дуополистов. Им на рис. 11.3 соответствуют линии R1(q2) и R2(q1). Равновесные выпуски Курно определяются подстановкой (11.12*) в (11.12) для определения q*1 и соответственно (11.12) в (11.12*) для определения q*2 (или с использованием правила Крамера). После подстановки имеем

q*1 =(a-c)/3b, (11.13)
q*2 = (a - c)/3b, и следовательно,

Q* = (q*1 + q*2) = 2(a - c)/3b. (11.14)

Равновесные выпуски дуополистов (11.13) и являются координатами точки равновесия выпусков Курно≈ Нэша (точка C-N на рис. 11.3).

Говорят, что рынок находится в состоянии равновесия Нэша, если каждое предприятие придерживается стратегии, являющейся лучшим ответом на стратегии, которым следуют другие предприятия отрасли. Или, иначе, рынок находится в состоянии равновесия Нэша, если ни одно предприятие не хочет изменить своего поведения в одностороннем порядке. Такой тип равновесия назван равновесием Нэша в честь американского математика и экономиста, нобелевского лауреата по экономике (1994) Джона Нэша.2 Равновесие Курно ≈ частный случай равновесия Нэша, а именно это такой вид равновесия Нэша, когда стратегия каждого предприятия заключается в выборе им своего объема выпуска. Как мы в дальнейшем увидим, стратегия предприятия может заключаться и в выборе другого параметра, скажем, цены. В нашем рассуждении мы имеем дело именно с такого типа равновесием, почему и называем его равновесием Курно≈ Нэша.

Поскольку вторые производные функций прибыли (11.9), (11.9*) меньше нуля,

dp21/dq21 = - 2b < 0, (11.15)
dp22/dq22 = - 2b < 0

условие максимизации прибылей дуополистов второго порядка также выполняется и, следовательно, выпуски q*1 и q*2 действительно обеспечивают максимумы прибыли дуополистам 1 и 2.

Подставив теперь значения равновесных выпусков из (11.13) в (11.6*), найдем значение равновесной цены дуополии Курно: P* = a - b ∙ 2(a - c)/3 = a/3 + 2c/3. (11.16)

Следовательно, равновесные цены и объемы выпуска дуополистов Курно одинаковы, что объясняется однородностью их продуктов (близостью товаров-субститутов) и равенством их затрат на производство.

Одноактное аналитическое решение проблемы дуополии Курно позволяет отбросить попер йодный (шаг за шагом) процесс достижения равновесия, использованный нами в числовой версии модели. Мы помним (раздел 2.4), что метод сравнительной статики исходит из гипотезы о мгновенном, а не пошаговом протекании процессов приспособления к условиям рынка. Мы, однако, используем пошаговый процесс еще раз, чтобы рассмотреть условия стабильности равновесия Курно.

Равновесие дуополии Курно стабильно, если (линейная) кривая реагирования дуополиста 1 имеет более крутой наклон, чем кривая реагирования дуополиста 2. Это условие выполняется, если положение изопрофит олигополистов удовлетворяет условию 5, а именно ≈ наивысшие точки изопрофит дуополиста 1 по мере приближения к его оси выпуска должны смещаться влево, а такие же точки дуополиста 2 по мере приближения к его оси выпуска ≈ вправо.

Обратимся к рис. 11.4. Допустим (неважно по каким причинам), дуополист 1 решает произвести q'1 товара, что ниже его равновесного выпуска q'1 Дуополист 2 ответит на это выпуском q'2, полагая, что соперник сохранит фиксированным объем выпуска q*1. Однако, как следует из рис. 11.4, тот ответит на выпуск q'1увеличением своего выпуска до q''1, руководствуясь предположением, что дуополист 2 не изменит своего выпуска q'1. Но на это дуополист 2 ответит снижением своего выпуска до q''2. Этот процесс будет продолжаться до того момента, когда будет достигнута точка С.

 

Модель Штакельберга

Модель асимметричной дуополии, предложенная Штакельбергом в 1934 г., представляет развитие моделей количественной дуополии Курно и Чемберлина. Асимметрия дуополии Штакельберга заключается в том, что дуополисты могут придерживаться разных типов поведения ≈ стремиться быть лидером или последователем. Последователь Штакельберга придерживается предположений Курно, он следует своей кривой реагирования и принимает решения о прибылемаксимизирующем выпуске, полагая выпуск соперника заданным. Лидер Штакельберга, напротив, не столь наивен, как обыкновенный дуополист Курно, Он настолько изощрен в понимании рыночной ситуации, что не только знает кривую реагирования соперника, но и инкорпорирует ее в свою функцию прибыли, так что последняя принимает вид

pi = f(qi, Rj(qi). (11.43)

А затем он максимизирует свою прибыль, действуя подобно монополисту.

Ясно, что в случае дуополии возможны четыре комбинации двух типов поведения.

1. Дуополист 1 ≈ лидер, дуополист 2 ≈ последователь.

2. Дуополист 2 ≈ лидер, дуополист 1 ≈ ∙ последователь.

3. Оба дуополиста ведут себя как последователи.

4. Оба дуополиста ведут себя как лидеры.

В случаях 1 и 2 поведение дуополистов совместимо, один ведет себя как лидер, другой ≈ как последователь. Здесь не возникает конфликта и исход их взаимодействия стабилен. Случай 3 по сути представляет ситуацию дуополии Курно, оба дуополиста руководствуются своими кривыми реагирования, и исход их взаимодействия стабилен. Нередко поэтому говорят, что модель Курно ≈ это частный случай модели Штакельберга.

А вот в последнем случае, когда оба дуополиста стремятся стать лидерами, каждый из них предполагает, что соперник будет вести себя в соответствии со своей кривой реагирования, т. е. как монополист Курно, тогда как на деле ни один из них не придерживается такого типа поведения. Исходом подобного взаимодействия становится неравновесие Штакельберга, ведущее к развязыванию ценовой войны. Она будет продолжаться до тех пор, пока один из дуополистов не откажется от своих притязаний на лидерство либо дуополисты вступят в сговор. Сам Штакельберг считал именно случай 4 наиболее обычным исходом дуополии. Рассмотрим возможные исходы подробнее.

Последователь Штакельберга, как уже было сказано, придерживается своей функции реагирования вида (11.11), (11.11*) или (11.12), (11.12*), а затем при определенном количественном решении соперника, представляющегося последователю лидером, приспосабливает свой выпуск к прибылемаксимизирующему уровню. Лидер понимает, что его соперник ведет себя как последователь, и при данной его функции реагирования определяет свой прибылемаксимизирующий выпуск. Поэтому в случае 4 каждый дуополист определяет максимум своей прибыли исходя из предположения, что он является лидером, а соперник ≈ последователем. Если в результате прибыль лидера окажется выше прибыли последователя, дуополист выберет положение лидера, независимо от того, что решит соперник. В противном случае он выберет положение последователя.

Исходя из аналитической версии модели Курно (раздел 11.2.1.1.2), представим функцию прибыли лидера (11.43) для дуополиста 1, подставив в уравнение его прибыли (11.9) функцию реагирования дуополиста 2 (11.12*). Тогда (11.9) примет вид

p1 = aq1 - bq12 - bq1[(a - c)/2b - qi/2] - cq1, (11.44)

что после преобразований и перестановок дает

p1 = ((a - c)/2)q1 - (b/2)q12. (11.45)

Приравнивая производную (11.45) по q1 нулю, имеем

dp1/dq1 = (a - c)/2 - bq1 = 0,

откуда

ql1 = (a - c)/2b. (11.46)

Это и есть оптимальный выпуск лидера Штакельберга. Он обеспечивает максимум его прибыли, поскольку условие второго порядка также выполняется b > 0 по предположению). В силу симметричности ситуации, возникающей в случае 4, прибылемаксимизирующий выпуск дуополиста 2, тоже претендующего на роль лидера, также составит

ql2 = (a - c)/2b. (11.46*)

(Верхний индекс I в (11.46) и (11.46*) означает прибылемаксимизирующий выпуск лидера).

Определим теперь прибылемаксимизирующий выпуск последователя Штакельберга, подставив (11.46*) в (11.12) и соответственно (11.46) в (11.12*):

qf1 = [(a - c)/2b] √ [1/2 (a - c)/2b] = (a - c)/4b/i< >, (11.47)

qf2 = [(a - c)/2b] √ [1/2 (a - c)/2b] = (a - c)/4b/i< >. (11.47*)

(Верхний индекс /" в (11.47) и (11.47*) означает прибылемаксимизирующий выпускпоследователя).

Таким образом, прибылемаксимизирующий выпуск последователя, qfi, вдвое ниже прибылемаксимизирующего выпуска лидера, qli (i = 1, 2). Сравнив (11.46), (11.46*), (11.47) и (11.47*) с (11.17), заметим, что прибылемаксимизирующий выпуск лидера Штакельберга тот же, что и у дуополиста Курно, а последователя вдвое меньше, чем у последнего.

В случаях 1 и 2, когда один дуополист, неважно какой именно, ведет себя как лидер, а другой как последователь, их общий выпуск будет равен сумме либо (11.46) и (11.47*), либо (11.46*) и (11.47), т. е.

Q = (a - c)/2b + (a - c)/4b = 3(a - c)/4b. (11.48)

Подставив (11.48) в функцию рыночного спроса (11.6), найдем равновесную цену олигополии Штакельберга в ситуациях 1, 2. Она будет равна

P = a - b ∙ 3(a - c)/4b = (a + 3c)/4. (11.49)

(11.48) и (11.49) ≈ параметры равновесия Штакельберга.

Для того чтобы от равновесия перейти к неравновесию Штакельберга (от случаев 1 и 2 к случаю 4), определим сначала прибыли лидера и последователя. Это, между прочим, поможет нам понять стремление олигополистов Штакельберга именно к неравновесию. Подставим сначала значение ql1 из (11-46) в (11.45). Прибыль лидера, если им окажется дуополист 1, составит

pl1 = [(a - c)/2][(a - c)/2b] √ (b/2) [(a - c)2/4b2] = [(a - c)2/4b] √ [(a - c)2/8b] = (a - c)2/8b. (11.50)

Симметрично прибыль дуополиста 2, если тот окажется лидером, будет

pl1 = (a - c)2/8b. (11.50*)

Определим теперь прибыль последователя, подставив значения qf и ql в (11.9) и (11.9*). Если им окажется дуополист 1, то

pf1 = a(a - c)/4b - b[(a - c)/4b]2 - b[(a - c)/4b][(a - c)/2b] - c(a - c)/4b = [(a - c)2/4b] √ [a(a - c)2/16b] √ [a(a - c)2/8b],

откуда после упрощений и перестановок получим

pf1 = (a - c)2/16b. (11.51)

Симметрично прибыль дуополиста 2, если он окажется последователем, будет

pf2 = (a - c)2/16b. (11.51*)

Сопоставив теперь (11.51) с (11.50), а (11.51*) с (11.50*), мы заметим, что прибыль лидера вдвое превышает прибыль последователя, будь то дуополист 1 или 2. Поэтому-то и тот и другой предпочтут оказаться лидерами. Но тогда их прибыли окажутся не максимальными, а, напротив, минимальными. Действительно, подставив значения прибылемаксимизирующих выпусков обоих стремящихся стать лидерами дуополистов, т. е. (11.46) и (11.46*), в уравнение линейной функции спроса (11.6*), получим

P = a - b[(a - c)/2b + (a - c)/2b]. (11.52)

Это равенство цены предельным (и средним) затратам ( р = с = МС = АС) означает, чтоприбыль дуополистов равна нулю, а это несовместимо со стабильным исходом. Таким образом, ситуация, разрешающаяся стабильным решением в модели Курно, обращается внеравновесие Штакельберга при некотором изменении предположений о поведении дуополистов. Ниже приведены основные параметры равновесия Штакельберга:

 
Выпуск Прибыль Рыночная цена
лидера последователя отрасли лидера последователя
(a - c)/2b (a - c)/4b 3(a - c)/4b (a - c)2/8b (a - c)2/16b (a + c)/4

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-11; Просмотров: 865; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.041 с.)
Главная | Случайная страница | Обратная связь