Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Расчетно-графическая работа № 1Стр 1 из 8Следующая ⇒
МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ к выполнению расчетно-графических работ по дисциплине “Электротехника и электроника”
для студентов дневной формы обучения неэлектротехнических специальностей
Составитель: Сергашова Н. А.
САМАРА 2003 УДК 621.313 Методические указания и задания к выполнению расчетно-графических работ по дисциплине “Электротехника и электроника” для студентов дневной формы обучения неэлектротехнических специальностей. - Самара: СамГАПС, 2003. - 72с.
Утверждено на заседании кафедры ТОЭАиЭ, 4 октября 2002 г., протокол № 2.
Печатается по решению редакционно-издательского совета академии.
В работе представлены задания с краткими методическими указаниями для выполнения расчетно-графических работ по темам: «Анализ и расчет простых и сложных электрических цепей постоянного тока», «Расчет цепей однофазного синусоидального тока», «Расчет цепей трехфазного тока, соединенных звездой и треугольником», «Расчет однофазного выпрямителя, работающего на активную нагрузку». Методические указания предназначены для студентов дневной формы обучения нетехнических специальностей.
Составитель: Нина Александровна Сергашова
Рецензенты: Буканов Ф.Ф., к.т.н., зав. кафедрой «Электронные системы и информационная безопасность ГОУВПО» СамГТУ; Сидоров Б.Л., к.ф.-м.н., доцент СамГАПС
Редактоp: Егорова И.М.
Компьютерная верстка: Чертыковцева Н.В.
Подписано в печать 17.07.2003. Фоpмат 60х90 1/16 Бумага писчая. Усл. п.л.4, 6 Тиpаж 500 экз. Заказ № 107
© Самаpская государственная академия путей сообщения, 2003 Общие требования к выполнению РГР по курсу “Электротехника и электроника”
Данные методические указания включают задания и справочные данные к шести расчетно-графическим работам. Они охватывают материал по курсу “Электротехника и электроника” для неэлектротехнических специальностей. Выполнение РГР помогает лучше понять изученные вопросы и закрепить в памяти основные положения и соотношения, проверить усвоение разделов курса. Расчетно-графическая работа развивает мышление, способствует приобретению навыков использования ЭВМ для расчета электрической цепи, дает возможность творчески применить теоретические знания к практическим расчетам и представляет собой один из основных видов самостоятельной работы студентов. РГР должны быть выполнены либо на листах формата А4 (210х297мм) на одной стороне листа, либо в тетради в клетку с полями 30 мм. Работа должна иметь титульный лист, где указывается принадлежность к министерству, вузу, номер и название РГР, фамилия, имя отчество студента, номер студенческого билета и номер по списку в журнале группы. После титульного листа должны быть приведены исходная схема, данные для расчета и задание. Соблюдение действующих ГОСТов и международной системы единиц СИ - обязательны. Все графики и диаграммы выполняются с указанием масштаба, например, масштаб по току mI = 0, 5 A/см (по напряжению mv = 20 В/см). Результаты решения вначале приводятся в общем виде, а затем подставляются числовые значения. Все промежуточные вычисления приводятся обязательно, иначе проверка работы затруднена; такая работа возвращается студенту. В ходе решения не следует изменять однажды принятые положительные направления токов и наименования узлов. При решении одной и той же задачи различными методами одной и той же величине следует присваивать одно и то же обозначение. В конце работы ставятся дата и подпись. Незачтенная работа возвращается студенту для устранения замечаний, исправленная работа сдается на повторную проверку под заголовком “Работа над ошибками”.
Расчетно-графическая работа № 1
Расчет электрической цепи постоянного тока с одним источником ЭДС методом эквивалентных преобразований (“свертывания”)
Задание на выполнение РГР-1
Для заданных схем электрической цепи, изображенных на рис. 5, с заданными в табл. 1 напряжениями на зажимах цепи и сопротивлениями требуется: 1. Рассчитать все токи и напряжения на участках электрической цепи. 2. Составить баланс генерируемой и потребляемой мощностей. Номер схемы выбирается по последней цифре студенческого билета, номер варианта числовых значений выбирается в соответствии с порядковым номером фамилии студента в журнале группы. Рис. 5. По последней цифре студенческого билета
Таблица 1
1.3. Методические указания к выполнению РГР-1 и пример расчета электрической цепи постоянного тока с одним источником напряжения
При выполнении РГР – 1 необходимо знать и уметь применять в расчетах основные законы электрических цепей (закон Ома и законы Г. Кирхгофа), методы эквивалентного преобразования схем электрических цепей. Методику расчета электрических цепей методом эквивалентного преобразования рассмотрим на примере цепи, приведенной на рис.6, а.
Рис. 6
Решение Непосредственно определить токи в ветвях схемы невозможно, так как неизвестно распределение напряжений на отдельных ее участках. Обозначим токи в ветвях по номерам резисторов. Ток источника, общий ток цепи обозначим через I (без индекса). Сначала путем постепенного упрощения найдем эквивалентное сопротивление схемы (Rэкв), что позволит определить общий ток I в неразветвленной части цепи. Этапы последовательного «свертывания» показаны на рис.6, а – 6, е. Параллельное соединение сопротивлений R5 и R6 заменяется одним эквивалентным сопротивлением на R56 (рис.6, б). Эквивалентное сопротивление R56 определяем по формуле: R56 = R5R6/(R5 + R6). На полученной схеме (рис. 6, б) сопротивления R4 и R56 соединены последовательно. Это позволяет определить эквивалентное сопротивление R456 = R4 + R56. Получаем еще более упрощенную схему, (рис. 6, в). На этой схеме сопротивления R3 и R456 соединены параллельно. Определяем эквивалентное сопротивление R3456 (рис.6, г) по соотношению 1/R3456 = 1/R3 + 1/R456, из которого R3456 = R3 R456/ R3 + R456. Сопротивления R2 и R3456 соединены последовательно (рис.6, г), что позволяет определить эквивалентное сопротивление R23456 = R2 + R3456. Этой стадии упрощения соответствует схема на рис.6.д, в которой сопротивления R1 и R23456 соединены параллельно. Определяем общее эквивалентное сопротивление всей цепи Rэкв = R1 R23456/ R1 + R23456. Теперь ток в неразветвленной части цепи, т.е. ток источника, определяем по закону Ома: I = U/Rэкв. Для определения токов в ветвях будем в обратном порядке последовательно «развертывать» схему (рис. 6, а-6, е). Для определения токов I1 и I2 перейдем к схеме на рис.6, д и применим закон Ома: I1= U/R1; I2= U/ R23456. Для определения токов I3 и I4 перейдем к схеме на рис.6, в. Сопротивления R3 и R456 соединены параллельно и находятся под действием одного напряжения Uав. Это напряжение можно определить по формуле: Uав.= I2 × R3456 или Uав= U - I2 × R2. Тогда I3 = Uав/R3; I4 = Uав/R456. Проверку правильности расчетов можно осуществлять по ходу решения, применяя первый закон Кирхгофа: I3 + I4 = I2. Для определения токов I5 и I6 переходим к исходной схеме (рис.6, а). Сопротивления R5 и R6 соединены параллельно и находятся под одним напряжением Uсв = U56. Определяем это напряжение: Uсв = U56 = I4 × R56 или Uсв.= Uав – I4 × R4. Теперь можно определить токи I5 и I6: I5 = Uсв/R5; I6 = Uсв/R6. Правильность расчета подтвердит первый закон Кирхгофа: I5 + I6 = I4. Таким образом, определены токи во всех ветвях цепи и падение напряжения на сопротивлениях.
Расчет баланса мощности
Баланс мощности отражает закон сохранения энергии и определяет равенство мощности, выработанной источником, и мощности, потребляемой приемниками: SРис = SРпр. Рассматриваемая цепь содержит один источник, мощность которого Рис = U × I, где U – напряжение на зажимах источника, I – ток источника. Мощность приемника определяется по формуле Рпр i = Ii2 × Ri, где Ii – ток, протекающий через сопротивление Ri. Тогда баланс мощностей для рассматриваемой цепи: U × I = I22 R2 + I32 R3 + I42 R4 + I52 R5 + I62 R6. Мощность измеряется в ваттах [Вт]. Правильными считаются расчеты, результаты которых дают погрешность баланса мощностей менее 2%. Эта погрешность определяется по формуле: .
Задание на выполнение РГР-2
Для заданных схем сложной электрической цепи, изображенных на рис. 8, с заданными по табл. 2. ЭДС и сопротивлениями требуется: 1. Составить уравнения для определения токов путем непосредственного применения законов Кирхгофа. Решать систему не следует. 2. Определить токи в ветвях методом контурных токов и методом узловых потенциалов (можно использовать ЭВМ в одном из методов). 3. Составить баланс мощности. 4. Построить потенциальную диаграмму для контура, включающего два источника ЭДС. Номер схемы выбирается по последней цифре студенческого билета, номер варианта числовых значений по предпоследней цифре студенческого билета.
Рис.8 Таблица 2
В таблице 2 «j», «i», «k» - номер ветви, содержащей ЭДС, причем j< i< k, ЭДС обозначается по номерам резисторов.
Задание на выполнение РГР-3 1. Для неразветвленной цепи переменного тока определить неизвестные параметры – R, XL, XС, Z, U, I, cosj, j, P, Q, S. Построить векторную диаграмму и пояснить ее построение, или, пользуясь векторной диаграммой и данными из табл.3 для заданного варианта, начертить схему неразветвленной цепи переменного тока и определить величины, упомянутые выше. 2. Ответить на теоретический вопрос своего варианта, если нужно, подтвердив его расчетами. Номер схемы, диаграммы выбирается по последней цифре студенческого билета, номер варианта в соответствии с порядковым номером фамилии студента в журнале группы.
Задача 1-III Условие: для неразветвленной цепи переменного тока (рис.15) определить Z, U, I, cosj, j, P, Q, S. Построить в масштабе векторную диаграмму и пояснить ее построение. Вопрос: какое явление возникнет в цепи, если XС1 = XL1?
Задача 2-III Условие: см. задачу 1-III, исходная схема – 2-III (рис. 15). Вопрос: объяснить, как изменится активная мощность, потребляемая схемой, и угол сдвига фаз при уменьшении активного сопротивления.
Задача 3-III Условие: см. задачу 1-III, исходная схема – 3-III (рис. 15). Вопрос: объяснить, как изменится напряжение на индуктивном сопротивлении XL2 при увеличении частоты тока в два раза.
Задача 4-III Условие: см. задачу 1-III, исходная схема - 4-III (рис. 15). Вопрос: какое влияние окажет на угол сдвига фаз увеличение емкостного сопротивления XС1 вдвое?
Задача 5-III Условие: см. задачу 1-III, исходная схема – 5-III (рис. 15). Вопрос: определить, как изменится сила тока в цепи при увеличении частоты в два раза.
Задача 6-III Условие: для неразветвленной цепи переменного тока с активными и реактивными сопротивлениями задана векторная диаграмма (см. рис.15, Вопрос: как изменится векторная диаграмма, если увеличить частоту вдвое?
Задача 7-III Условие: см.задачу 6-III, векторная диаграмма – 7-III (рис. 15).
Задача 8-III Условие: см. задачу 6-III, векторная диаграмма – 8-III (рис. 15).
Задача 9-III Условие: см. задачу 6-III, векторная диаграмма – 9-III (рис. 15).
Задача 10-III Условие: см. задачу 6-III, векторная диаграмма – 10-III (рис. 15).
Рис.15
Таблица 3
Пример расчета цепи переменного тока методом векторных диаграмм
Задача: для неразветвленной цепи переменного тока определить величины всех сопротивлений, а также cosj, j, P, Q, S, I. Построить в масштабе векторную диаграмму. Вопрос: какое явление возникает в такой цепи при XС1 = XL1? Дано: U1 = 10 В, U2 = 40 В, U3 = 8 В, U4 = 8 B, U5 = 6 В, Q = -64 вар. Решение Рис.16
Так как известна реактивная мощность данной цепи и все падения напряжений в ней, то, определив реактивную составляющую напряжения Теперь, зная ток, по закону Ома находим значения всех сопротивлений: R1 = U1/I = 10/2 = 5 (Ом); Xc1 = U2/I = -40/2 = -20 (Ом); R2 = U3/I = 8/2 = 4 (Ом); XL1 = U4/I = 8/2 = 4 (Ом); R3 = U5/I = 6/2 = 3 (Ом). Далее: cosj = R/Z = 12/20 = 0, 6; S = ZI2 = 80 ВА; j = 53°; P = RI2 = 12× 22 = 48 или .
mi = 1A/20 мм, mu = 1 B/мм. Рис.17
Ответ на теоретический вопрос: равенство XС1 = XL1 - есть условие возникновения в данной цепи резонанса напряжений. Задание на выполнение РГР-4а
Расчет НЕРАЗВЕТВЛЕННОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА
Необходимо: 1. Определить действующее значение тока комплексным методом и закон его изменения. 2. Определить активную, реактивную и полную мощности, потребляемые из сети. 3. Построить векторную диаграмму. Напряжение на зажимах цепи, изображенной на рис.20, изменяется по закону u = Umsin(wt + ju), где w = 2pf при f = 50 Гц. Амплитудное значение Um и начальная фаза ju напряжения, значения активных R, индуктивных XL и емкостных XC сопротивлений заданы в табл.4, а. Номер схемы выбирается по последней цифре студенческого билета. Номер варианта выбирается в соответствии с порядковым номером фамилии студента в журнале группы.
Рис. 20 Таблица 4а
Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 1289; Нарушение авторского права страницы