Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Цели, задачи и методы технического диагностирования грузоподъёмных машин.



Целью технической диагностики являются определение возможности и условий дальнейшей эксплуатации диагностируемого оборудования и в конечном итоге повышение промышленной и экологической безопасности.

Задачами технической диагностики, которые необходимо решить для достижения поставленной цели, являются:

· обнаружение дефектов и несоответствий, установление причин их появления и на этой основе определение технического состояния оборудования;

· прогнозирование технического состояния и остаточного ресурса (определение с заданной вероятностью интервала времени, в течение которого сохранится работоспособное состояние оборудования).

Решение перечисленных задач, особенно для сложных технических систем и оборудования, позволяет получить большой экономический эффект и повысить промышленную безопасность соответствующих опасных производственных объектов. Техническая диагностика благодаря раннему обнаружению дефектов позволяет предотвратить внезапные отказы оборудования, что повышает надежность, эффективность и безопасность промышленных производств, а также дает возможность эксплуатации сложных технических систем по фактическому техническому состоянию.

Таким образом, техническая диагностика решает обширный круг задач, многие из которых являются смежными с задачами других научных дисциплин. Основной проблемой технической диагностики является распознавание состояния технической системы в условиях ограниченной информации.

Методы диагностики технического состояния можно разделить на два принципиально отличающихся типа: разрушающие и неразрушающие. К методам разрушающего контроля обычно относят предпусковые или периодические гидравлические испытания аппаратов, а также механические испытания образцов металла, вырезанных из их элементов. При оценке технического состояния длительно проработавших аппаратов неразрушающие методы контроля обеспечивают получение наиболее существенной информации для прогнозирования ресурса их безопасной эксплуатации. Неразрушающие методы контроля предполагают применение физических методов контроля качества, не влияющих на работоспособность конструкции аппарата.

Цель неразрушающих методов контроля при изготовлении оборудования сводится к обнаружению дефектов и к постановке задачи по контролю и оценке качества материала в исходном состоянии. Неразрушающие методы контроля служат инструментом для улучшения качества конструирования и технологических процессов изготовления оборудования. При оценке ресурса безопасной эксплуатации длительно проработавшего оборудования также необходимо опираться на данные о реальной дефектности конструктивных элементов оборудования.

В настоящее время для обнаружения и идентификации дефектов используется широкий спектр методов неразрушающего контроля (НК). Современная классификация методов НК включает девять видов контроля: электрический, магнитный, вихретоковый, радиоволновой, тепловой, визуально-измерительный, радиационный, акустический и проникающими веществам. По причинам конструктивного и эксплуатационного характера при диагностировании сварных аппаратов, трубопроводов, резервуаров используются, в основном, следующие методы НК: магнитный контроль; капиллярный контроль, акустический контроль (ультразвуковая дефектоскопия и толщинометрия, метод акустической эмиссии), радиационные методы (рентгеновский, γ и β излучением). При этом следует отметить, что радиационные методы применяются преимущественно на стадии изготовления аппаратов, а использование магнитного метода носит эпизодический характер. Руководящие документы по оценке текущего состояния нефтеперерабатывающего и нефтехимического оборудования предписывают использование в качестве основных методов ультразвуковой и капиллярной дефектоскопии, а остальные методы рассматривают как дополнительные.

Каждый из видов НК подразделяют на методы, отличающиеся следующими признаками:

· характером взаимодействия поля или вещества с объектом, определяющим соответствующие изменения поля или состояния вещества;

· параметром поля или вещества (первичным информативным параметром), измеряемым в процессе контроля;

· способом измерения параметра поля или вещества.

Ни один из методов НК не является универсальным. Каждый из них может быть использован наиболее эффективно для обнаружения определенных дефектов в заданных условиях. Например, многие из методов применимы для контроля некоторых типов материалов: радиоволновые – для радиопрозрачных диэлектрических материалов; электроемкостный – для неметаллических, плохо проводящих ток материалов; вихретоковый, электропотенциальный – для хороших электропроводников; магнитный – для ферромагнетиков; акустический – для материалов, обладающих небольшим затуханием звука соответствующей частоты, и т.д.

Чувствительность соответствующего метода НК оценивается наименьшими размерами выявляемых дефектов: для поверхностных – шириной раскрытия на поверхности детали, а также протяженностью и глубиной развития; для скрытых — размерами дефекта и глубиной его залегания. Сопоставление различных методов контроля можно проводить только в тех условиях, когда возможно применение нескольких методов. Перечень рекомендуемых методов НК приводится в нормативно-технических документах по технической диагностике конкретных объектов.

Для обеспечения единообразия проведения контроля в различных условиях, единства и требуемой точности получаемых результатов разработана система нормативно-технических документов. Она включает государственные стандарты, отраслевые стандарты, правила и методики контроля. В них регламентируются классификация методов НК, терминология, основные параметры средств контроля, методы и периодичность их метрологической поверки, методика проведения НК, требования к квалификации персонала и др.

Методы НК основаны на использовании физических явлений для обнаружения и определения параметров дефекта. В свою очередь неразрушающие методы контроля подразделяются на пассивные (интегральные) и активные (локальные).

К активным методам НК относятся методы, в которых измеряется изменение возбуждаемого физического поля, а к пассивным методам относятся методы, использующие свойства физического поля, возбуждаемого самым контролируемым объектом.

Локальные методы позволяют обнаружить дефект лишь на ограниченной площади, а интегральные методы способны проконтролировать весь крупногабаритный объект в целом.

Активными методами являются: визуальный и измерительный контроль, ультразвуковая дефектоскопия, магнитные, радиографические капиллярные, метод вихревых токов, электрический.

К пассивным относятся: тепловизионный, виброакустические методы и акустической эмиссии.

При выборе методов неразрушающего контроля конкретных элементов конструкций необходимо учитывать следующие основные факторы: характер (вид) возможных дефектов и их расположение; возможности методов контроля; виды деятельности, при которых применяется неразрушающий контроль (изготовление, ремонт, техническое диагностирование); формы и размеры контролируемых элементов конструкций; материалы, из которых изготовлены контролируемые элементы; состояние и шероховатость контролируемых поверхностей конструкций.

В зависимости от происхождения дефекты различаются расположением, размерами, формой и средой, заполняющей их полости. Подрезы, наплывы, кратеры, прожоги и свищи являются поверхностными дефектами; непровары, шлаковые включения и расслоения – внутренними дефектами. Трещины, поры и раковины могут располагаться как на поверхности, так и внутри объекта контроля. Трещины, непровары и подрезы являются плоскостными дефектами. Они имеют протяженную форму с различными раскрытием и глубиной. В полости дефектов могут быть окислы, смазка, нагар и другие загрязнения. Для трещин, непроваров и подрезов характерны острые окончания, а для трещин также - резкие очертания. Поры, раковины и часто шлаковые включения - это объемные дефекты, имеющие округлую форму.

При изготовлении и ремонте сварных конструкций из низкоуглеродистых и низколегированных сталей наиболее вероятно появление дефектов в сварных швах: трещин, непроваров, подрезов, пор, раковин, шлаковых включений, наплывов, кратеров, прожогов и свищей. Неразрушающий контроль сварных конструкций при техническом диагностировании оборудования должен быть направлен на выявление трещин в сварных швах и основном металле, возникших в процессе их эксплуатации.

При изготовлении и ремонте сварных конструкций из низкоуглеродистых и низколегированных сталей наиболее вероятно появление дефектов в сварных швах: трещин, непроваров, подрезов, пор, раковин, шлаковых включений, наплывов, кратеров, прожогов и свищей.

Неразрушающий контроль сварных конструкций при техническом диагностировании машин должен быть направлен на выявление трещин в сварных швах и основном металле, возникших в процессе их эксплуатации.

Визуальный и измерительный контроль позволяет выявлять наиболее часто встречающиеся поверхностные дефекты (за исключением дефектов, имеющих размеры до ~ 0, 15 мм), и он является обязательным независимо от видов деятельности, при которых применяется неразрушающий контроль. Визуальный и измерительный контроль - самый простой и в то же время информативный метод контроля. Это единственный метод неразрушающего контроля, который может выполняться и часто выполняется без какого-либо оборудования или проводится с использованием простейших измерительных средств. Он позволяет выявлять поверхностные поры и трещины, подрезы, кратеры, прожоги, свищи, наплывы, смещения кромок и другие дефекты. К недостаткам метода можно отнести низкую вероятность обнаружения мелких поверхностных дефектов, а также зависимость выявляемости дефектов от субъективных факторов (острота зрения, усталость, опыт работы выполняющего контроль специалиста) и условий контроля (освещенность, оптический контраст и др.). Тем не менее простота, малая трудоемкость и определенная информативность визуального и измерительного контроля делают его обязательным и предшествующим проведению неразрушающего контроля другими методами. Какими бы уникальными ни были методы и средства последующих контрольных операций, контроль изделий начинается с визуального осмотра невооруженным глазом.

 

На оптимальном для глаз расстоянии – 250 мм различают детали размером ~0, 15 мм, однако возможности глаза ограничены при осмотре удаленных, движущихся, недостаточно освещенных объектов.

Наличие грубых поверхностных дефектов может указать на характер и место возможного разрушения конструкции. Учитывая, что различные дефекты имеют определенные доминирующие причины их образования, по результатам визуального и измерительного контроля можно ориентировочно оценить качество и стабильность технологического процесса изготовления или ремонта конструкций.

По внешнему виду сварного шва можно ориентировочно судить о внутреннем качестве шва. Превышение усиления сварного шва характерно для неполного проплавления кромок. Подрез на одной стороне сварного шва и наплыв на другой указывают на возможность непровара по кромке со стороны наплыва. При наличии поверхностных пор и грубой чешуйчатости шва, как правило, имеются и внутренние поры.

Капиллярный контроль используют для выявления поверхностных дефектов, в том числе сквозных, для определения их протяженности, направления и характера распространения. Метод позволяет обнаруживать невидимые или слабо видимые невооруженным глазом дефекты. Выявляются дефекты, имеющие раскрытие порядка 1 мкм, а глубину более 0, 02 мм.

Капиллярный контроль позволяет контролировать изделия любых размеров и форм, изготовленные из ферромагнитных и керамики и других конструкционных материалов, которые не растворяются и не набухают в дефектоскопических материалах. Преимуществами капиллярного контроля по сравнению с другими методами неразрушающего контроля являются: высокие чувствительность и разрешающая способность, наглядность результатов контроля, возможность контроля больших поверхностей конструкций и деталей за один прием, простота технологических операций контроля, относительно низкая стоимость используемых дефектоскопических материалов и оборудования. Важным преимуществом метода является хорошая выявляемость трещин. Недостатки метода следующие: возможность обнаружения только выходящих на поверхность дефектов и невозможность точного определения их глубины; сложность механизации и автоматизации процессов контроля и громоздкость стационарного оборудования; большая продолжительность контроля и снижение его достоверности при отрицательных температурах; необходимость тщательной подготовки контролируемой поверхности, ее очистки и удаления пенетранта, проявителя в процессе и после проведения контроля; вредность некоторых дефектоскопических материалов для обслуживающего персонала, необходимость использования различных защитных приспособлений и приточно-вытяжной вентиляции; ограниченный срок хранения дефектоскопических материалов, зависимость их свойств от продолжительности хранения и температуры окружающей среды. Для проведения капиллярного контроля необходимы наличие доступа к контролируемой поверхности для обработки ее дефектоскопическими материалами, достаточная интенсивность освещения или ультрафиолетового облучения и возможность выполнения температурных и временных режимов. Условием выявления дефектов является наличие полостей, свободных от загрязнений и других веществ, имеющих выход на контролируемую поверхность и глубину распространения, значительно превышающую ширину их раскрытия. Выявление дефектов, имеющих ширину раскрытия более 0, 5 мм, не гарантируется.

Применение метода для контроля сварных соединений, как правило, ограничивается плохим состоянием контролируемых поверхностей и возможными резкими переходами от наплавленного металла к основному. Для предотвращения появления при контроле окрашенного или светящегося слоя, который затрудняет оценку качества, необходимо проведение трудоемких работ по удалению окалины, брызг, грубой чешуйчатости и обеспечению плавного перехода от наплавленного металла к основному.

Магнитопорошковый контроль служит для выявления поверхностных и подповерхностных (залегающих на глубине до 10 мм) дефектов. Его применяют для контроля конструкций и деталей из ферромагнитных сталей обыкновенного качества, углеродистых качественных и низколегированных сталей. При магнитопорошковом контроле выявляются трещины шириной от 1 мкм и глубиной от 0, 01 мм. При контроле могут быть выявлены: волосовины, неметаллические включения, расслоения, закаты, подповерхностные флокены, поры, раковины в поковках и прокате; трещины шлифовочные, ковочные, штамповочные, надрывы, а также сварочные дефекты (трещины, непровары, шлаковые включения, поры, раковины и др.) в элементах конструкций и деталях; трещины, возникшие в элементах конструкций и деталях при эксплуатации машин. Магнитопорошковым контролем не могут быть проконтролированы элементы конструкций и детали: из неферромагнитных сталей; на поверхности которых не обеспечена необходимая зона для намагничивания и нанесения индикаторных материалов; со структурной неоднородностью и резкими изменениями площади поперечного сечения; с несплошностями, плоскость раскрытия которых совпадает с направлением намагничивающего поля или составляет с ней угол менее 30°. На выявляемость дефектов оказывают влияние многие факторы, связанные со свойствами объекта и принятой технологией магнитопорошкового контроля, а именно: магнитные свойства и структурные неоднородности материала, шероховатость, форма покрытий, их толщина и свойства, вид тока, схема намагничивания, способ контроля, а также значения таких параметров технологии контроля, как напряженность поля или сила тока. Допускается контроль по немагнитным покрытиям (хром, кадмий и др.). Наличие покрытий толщиной до ~ 20 мкм практически не влияет на выявляемость дефектов. При толщине покрытия более 100-150 мкм могут быть выявлены только дефекты размером более 0, 15 мм. Масштабность применения магнитопорошкового метода объясняется его высокой производительностью, наглядностью результатов контроля и высокой чувствительностью. При правильной технологии контроля элементов конструкций и деталей этим методом обнаруживаются трещины в начальной стадии их появления, когда обнаружить их без специальных средств контроля трудно или невозможно. Применение данного метода практически не ограничивает, как правило, плохое состояние поверхностей сварных соединений: наличие брызг и чешуйчатости; имеющиеся в сварных швах резкие переходы от наплавленного металла к основному, создающие дополнительные магнитные потоки рассеяния, а следовательно, дополнительные индикации. Метод позволяет достаточно эффективно выявлять в сварных соединениях поверхностные трещины.

Радиационный контроль служит для выявления как внутренних дефектов, так и недоступных для визуального контроля поверхностных дефектов. Чувствительность контроля зависит от плотности материала и толщины просвечиваемого объекта, характера дефекта, его формы и ориентации, режима и условий просвечивания, метода регистрации результатов контроля. Радиационный контроль проводится в целях выявления в сварных соединениях: внутренних дефектов в виде трещин, непроваров, раковин, пор и шлаковых (окисных и других) включений; недоступных для визуального контроля поверхностных дефектов в виде прожогов, подрезов, превышения проплава и т.п. Радиационный контроль не позволяет выявлять: поры и включения диаметром поперечного сечения или непровары и трещины высотой менее удвоенной чувствительности контроля; непровары и трещины с раскрытием менее 0, 1 мм; непровары и трещины, плоскость раскрытия которых не совпадает с направлением просвечивания или (при радиоскопическом контроле) с направлением строк телевизионного растра; любые дефекты, если их изображение на снимках совпадает с изображением посторонних деталей, острых углов или резких перепадов толщин свариваемых элементов. Наиболее целесообразен радиационный контроль для выявления объемных дефектов (пор, раковин и др.), им плохо выявляются плоскостные дефекты (непровары, трещины), плоскость раскрытия которых непараллельна направлению излучения. Самым распространенным методом радиационной дефектоскопии является радиография вследствие ее высокой чувствительности и простоты операций контроля. Важным преимуществом радиографического контроля является возможность определения типа (объемный или плоскостной) и вида (пора, шлаковое включение, непровар или трещина) выявленного дефекта. По данным вероятность выявления объемных дефектов в стыковых соединениях составляет около 90-92 %, а вероятность выявления плоскостных дефектов не превышает 30 %. При проведении радиационного контроля необходимо обеспечить радиационную безопасность персонала.

Акустико-эмиссионный контроль позволяет выявлять поверхностные и внутренние дефекты. Метод имеет достаточно сложную технологию, требует дорогого оборудования и очень высокой квалификации персонала.

Характерными особенностями, определяющими возможности, параметры и область применения акустико-эмиссионного метода, являются следующие: обеспечивается обнаружение и регистрация только развивающихся дефектов, что позволяет классифицировать дефекты не по размерам, а по степени их опасности; в производственных условиях метод позволяет выявить приращение трещины на десятые доли миллиметра; предельная чувствительность акустико-эмиссионной аппаратуры по расчетным оценкам составляет порядка 10-6 мм, что соответствует выявлению скачка трещины протяженностью 1 мкм на величину 1 мкм, что указывает на весьма высокую чувствительность к растущим дефектам; свойство интегральности метода обеспечивает контроль всего объекта с использованием одного или нескольких преобразователей, неподвижно установленных на поверхности объекта контроля; положение и ориентация дефектов не влияют на их выявляемость; метод имеет меньше ограничений, связанных со свойствами и структурой конструкционных материалов, чем другие методы неразрушающего контроля; особенностью метода, ограничивающей его применение, является в некоторых случаях трудность выделения акустико-эмиссионных сигналов из помех. Это связано с тем, что акустико-эмиссионные сигналы являются шумоподобными, поскольку акустическая эмиссия является случайным импульсным процессом. Вследствие этого, когда сигналы малы по амплитуде, выделение полезного сигнала из помех представляет собой сложную задачу. При развитии дефекта, когда его размеры приближаются к критическому значению, амплитуда сигналов и темп их генерации резко увеличиваются, что приводит к значительному возрастанию вероятности обнаружения такого источника акустической эмиссии. Акустико-эмиссионный контроль проводится только при создании в контролируемой конструкции напряженного состояния, инициирующего в материале объекта работу источников акустической эмиссии. Для этого конструкция подвергается нагружению.

Ультразвуковой контроль наиболее распространенный физический метод неразрушающего контроля. По сравнению с другими методами ультразвуковой контроль имеет следующие преимущества: высокую чувствительность и производительность, возможность контроля при одностороннем доступе, относительно низкую стоимость оборудования, безопасность. Недостатками ультразвукового контроля являются: сложная расшифровка дефектов, ограниченное применение для металлов с крупным зерном, сложность контроля изделий толщиной от 4 до 10 мм (при толщине до 4 мм ультразвуковой контроль практически не применяется), необходимость разработки специальных методик (технологических инструкций, технологических карт) при дефектоскопии изделий различных типов. Ультразвуковой контроль сварных конструкций проводят в целях выявления: трещин, непроваров, пор и шлаковых включений в сварных швах; трещин и расслоений в околошовных зонах и основном металле. Контролируются листовые и трубчатые элементы конструкций толщиной 4-60 мм. При этом могут быть проконтролированы: сварные соединения (стыковые соединения, выполненные с остающейся подкладкой (кольцом) или без нее; угловые и тавровые соединения, выполненные с полным проплавлением свариваемых кромок; тавровые соединения без разделки кромок и с К-образной разделкой кромок, выполненные с конструктивным непроваром; нахлесточные сварные соединения); клепаные соединения (исключая тела заклепок); болтовые соединения; элементы, выполненные из листового проката. Допускается проведение ультразвукового контроля указанных выше соединений, один из соединяемых элементов которых получен прокаткой, а другой является литой, штампованной или кованой деталью. В этом случае ультразвуковой контроль соединения проводят со стороны элемента, полученного прокаткой. Ультразвуком не могут быть проконтролированы: соединения, в которых оба соединяемых элемента литые, штампованные или кованые; угловые наклонные (отклонения от перпендикулярности превышают 10°) сварные соединения трубчатых элементов друг с другом ил и с другими элементами (прокатом, литыми, штампованными или коваными деталями). Контроль выполняется эхо-методом наклонными и прямыми совмещенными преобразователями контактным способом. Преобразователи перемещают по поверхности конструкций вручную. Ультразвуковой метод применяют в основном для выявления внутренних дефектов, но может быть использован и для выявления поверхностных дефектов. Важнейшим преимуществом ультразвукового контроля (в отличие от радиографии) является высокая вероятность выявления наиболее опасных плоскостных дефектов Экспериментальным путем установлено, что производительность ультразвукового контроля в среднем в 3-10 раз выше радиографического. Кроме того, себестоимость ультразвукового контроля в 4-8 раз ниже.

Вихретоковый контроль позволяет обнаруживать как поверхностные, так и подповерхностные (залегающие на глубине 1-4 мм) дефекты. Его применяют только для контроля объектов из электропроводящих материалов. Контроль вихревыми токами можно выполнять без непосредственного механического контакта преобразователей с объектом, что позволяет вести контроль при взаимном перемещении преобразователя и объекта с большой скоростью.

Объектами вихретокового контроля являются основной металл и (при снятом усилении шва) сварные соединения конструкций, а также детали. Вихретоковым контролем могут быть выявлены: ковочные, штамповочные, шлифовочные трещины, надрывы в элементах конструкций и деталях; волосовины, неметаллические включения, поры в поковках и прокате; трещины, возникшие в элементах конструкций и деталях при эксплуатации машин.

Вихретоковым методом не могут быть проконтролированы элементы конструкций и детали: с резкими изменениями магнитных или электрических свойств; с дефектами, плоскости раскрытия которых параллельны контролируемой поверхности или составляют с ней угол менее 10°; сварные швы без снятого усиления.

При вихретоковом контроле не обнаруживаются дефекты в элементах конструкций и деталях: с поверхностями, на которые нанесены электропроводящие защитные покрытия, если дефект не выходит на поверхность покрытия; с дефектами, заполненными электропроводящими частицами; с поверхностями, покрытыми коррозией.

Выявляемость дефекта при прочих равных условиях зависит от его типа. Наилучшим образом выявляются дефекты типа усталостных трещин, ориентированные перпендикулярно контролируемой поверхности. Ширина раскрытия усталостных трещин в определенных пределах не влияет на их выявляемость (20-30 мкм), однако выявляемость очень плотных трещин резко уменьшается Такое явление, например, характерно для закалочных трещин. Риски и надрезы по сравнению с усталостными трещинами, как правило, выявляются хуже. Заполнение полости дефекта грязью, нагаром, неэлектропроводящими окислами и т.п. не приводит к снижению их выявляемости.

Вихретоковый контроль наиболее эффективен при контроле немагнитных материалов. Возможность контроля ферромагнитных материалов и деталей из них определяется однородностью магнитных свойств, наличием локальных магнитных полюсов. Наличие локального изменения магнитных свойств материала детали может вызвать ложное срабатывание вихретокового дефектоскопа. Наличие на контролируемой поверхности зон структурной неоднородности, приводящих к изменению электропроводности, вызывает расстройку дефектоскопа. Увеличение электропроводности снижает чувствительность, уменьшение электропроводности вызывает эффект, аналогичный влиянию дефекта. Наличие на контролируемой поверхности значительных остаточных макронапряжений, возникающих в результате поверхностного упрочнения детали или под действием сжимающих остаточных напряжений, приводит к сжатию полостей трещин и других дефектов и к снижению их выявляемости. Чистота контролируемой поверхности оказывает значительное влияние на чувствительность контроля и износостойкость преобразователя. Максимальная чувствительность вихретокового вида контроля может быть достигнута при контроле деталей с шероховатостью поверхности не более Rz 20. Возможность и целесообразность контроля деталей с грубой поверхностью должна определяться в каждом конкретном случае специалистами по вихретоковому контролю.


Поделиться:



Популярное:

  1. I. Предмет и задачи дидактики
  2. II. Предполагаемые союзники и их задачи
  3. III. Целевые установки, задачи и направления обеспечения транспортной безопасности
  4. Алгоритм решения транспортной задачи
  5. Анализ подходов и методов решения задачи
  6. Анализ современного состояния АПК в России: задачи и экономическая стратегия развития
  7. БИЛЕТ 1. Цели, задачи и основные принципы православной педагогики. Сотериологический характер педагогических воззрений Святых Отцов Церкви
  8. БИЛЕТ 9. Вопрос 2. Психолого-педагогические задачи процесса духовно-нравственного становления личности на этапе вхождения в мир (наследство, зачатие, внутриутробное развитие, роды, новорожденность).
  9. Бухгалтерский учет: его задачи, функции и
  10. В чем состоит смысл научно-технического прогресса?
  11. В чем состоит смысл научно-технического прогресса?
  12. В чем состоит смысл научно-технического прогресса?


Последнее изменение этой страницы: 2016-05-29; Просмотров: 2400; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.037 с.)
Главная | Случайная страница | Обратная связь