Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тема 3.2 Аппроксимация экспериментальных данных. ⇐ ПредыдущаяСтр 4 из 4
Аппроксимацией называется процесс подбора эмпирической формулы j(х) для установления из опыта функциональной зависимости y=f(x). Эмпирические формулы служат для аналитического представления опытных данных. Обычно задача аппроксимации разделяется на две части. Сначала устанавливают вид зависимости y=f(x), т.е. решают, является ли она линейной, квадратической, логарифмической и т.п. Обычно определение параметров при известном виде зависимости осуществляется по методу наименьших квадратов. При этом функция j(х) считается наилучшим приближением к f(x), если для нее сумма квадратов отклонений теоретических значений j(х) найденных по эмпирической формуле, от соответствующих опытных значений минимальна, т.е. В Excel аппроксимация экспериментальных данных осуществляется путем построения их графика с последующим подбором подходящей аппроксимирующей функции (линии тренда). Возможны следующие варианты функций: 1. Линейная: y=ax+b. Обычно применяется в простейших случаях, когда экспериментальные данные убывают или возрастают с постоянной скоростью. 2. Полиномиальная: y=а0+ a1 x + a2 x2 +… an xn, (п£ ), аi– константы. Используется для описания экспериментальных данных, попеременно возрастающих и убывающих. Степень полинома определяется количеством экстремумов кривой. Так, например, полином второй степени может описать только один максимум или минимум, полином третьей степени – не более двух экстремумов. 3. Логарифмическая: , где а и b константы, ln – функция натурального логарифма. Функция применяется для описания экспериментальных данных, которые вначале быстро растут или убывают, а затем стабилизируются. 4. Степенная: y = bxa, где а и b – константы. Аппроксимация степенной функции используется для экспериментальных данных с постоянно увеличивающейся (убывающей) скоростью роста. Данные не должны иметь нулевых или отрицательных значений. 5. Экспоненциальная: y = bеaх, где а и b константы, е – основание натурального логарифма. Применятся для описания экспериментальных данных, которые быстро растут или убывают, а затем постепенно стабилизируется. Часто ее использование вытекает из теоретических соображений. Степень близости аппроксимации экспериментальных данных выбранной функции оценивается коэффициентом детерминации (R2). Чем больше коэффициент детерминации (стремится к единице), тем лучше. Для осуществления аппроксимации на диаграмме экспериментальных данных необходимо щелчком правой кнопки мыши вызвать контекстное меню и выбрать пункт Добавить линию тренда. В появившемся диалоговом окне Линия тренда, на вкладке Тип выбрать вид аппроксимирующей функции, на вкладке Параметры задаются дополнительные параметры, влияющие на отображение аппроксимирующей кривой, в частности можно установить флажки в поля Показывать уравнения на диаграмме и Поместить на диаграмму величину достоверности аппроксимации. Можно сделать прогноз о том, как будет вести себя исследуемая функция, для этого надо на вкладке Параметры указать количество периодов (от 0, 5) для которых будет сделан прогноз. Пример: Исследовать характер изменения с течением времени уровня производства некоторой продукции, и подобрать аппроксимирующую функцию, располагая следующими данными.
Решение:
Самостоятельное задание.
X – среднее число книг, прочитанных за год, Y – количество правонарушений. Постройте функцию, которая наилучшим образом отображает зависимость количества правонарушений от числа книг, прочитанных за год, и запишите ее уравнение.
Запишите аналитическую зависимость между x и y. Проанализируйте полученный ответ. Какова будет прибыль предприятия, если вложить 10, 0 единиц средств?
Популярное:
|
Последнее изменение этой страницы: 2016-06-04; Просмотров: 1575; Нарушение авторского права страницы