Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Сравнение коэффициентов корреляции и регрессии



Коэффициент корреляции

• Принимает значения в диапазоне от -1 до +1

• Безразмерная величина

• Показывает тесноту связи (связь как синхронность, согласованность ) между признаками

• Знак коэффициента говорит о направлении связи

Коэффициент регрессии

• Может принимать любые значения

• Привязан к единицам измерения обоих признаков

• Показывает структуру связи между признаками: характеризует связь как зависимость, влияние, устанавливает причинно-следственные связи.

• Знак коэффициента говорит о направлении связи

Усложнение модели

• Совокупное влияние всех независимых факторов на зависимую переменную не может быть представлено как простая сумма нескольких парных регрессий.

• Это совокупное влияние находится более сложным методом - методом множественной регрессии.

Этапы проведения корреляционного и регрессионного анализа:

· Выявление наличия взаимосвязи между признаками;

· Определение формы связи;

· Определение силы, тесноты и направления связи.

Задачи, решаемые после прочтения данной лекции:

Можно выписывать уравнения прямой и обратной регрессий для данных величин. Строить соответствующие графики. Находить коэффициент корреляции рассматриваемых величин. По критерию Стьюдента проверять гипотезу о существенности корреляционной связи. Пользуемся командами: ЛИНЕЙН и Мастер диаграмм в Excel.

Литература.

1. Конспект лекций.

  1. Гмурман, В.Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 2003. - 479 с.

 

1.8. Основные понятия планирования эксперимента и некоторые рекомендации

План лекции.

1. Планирование эксперимента: основные этапы и принципы.

2. Понятие эксперимента, отклика, поверхности отклика, факторного пространства.

3. Определение цели планирования эксперимента.

4. Основные этапы планирования:

Вопросы лекции:

1. Основные понятия. Постановка задачи.

Планирование эксперимента – это оптимальное (наиболее эффективное) управление ходом эксперимента с целью получения максимально возможной информации на основании минимально допустимого количества данных. Под самим же экспериментом понимаем систему операций, действий или наблюдений, направленных на получение информации об объекте.

Теория планирования эксперимента предполагает наличие определенных знаний и условно можно выделить следующие этапы планирования:

1) сбор и первичная обработка статистических данных

2) определение точечных и интервальных оценок распределения

3)и последующая их обработка, что предполагает знание статистических методов измерений случайной величины, теории проверки статистических гипотез, методов планирования эксперимента, в частности, пассивного эксперимента, методов дисперсионного анализа, методов поиска экстремума функции отклика;

2) составление плана эксперимента, проведение самого эксперимента, проведение обработки результатов эксперимента, оценка точности эксперимента.

Итак, дадим понятие самого эксперимента.

Эксперимент. Эксперимент является основным и наиболее совершенным методом познания, который может быть активным или пассивным.

- активный – основной вид эксперимента, который проводится в контролируемых и управляемых условиях, имеющих следующие преимущества:

1) результаты наблюдений независимые нормально распределенные случайные величины;

2) дисперсии равны друг другу (вследствие того, что выборочные оценки являются однородными);

3) независимые переменные измеряются с малой погрешностью в сравнении с погрешностью значения y;

4) активный эксперимент лучше организован: оптимальное использование факторного пространства позволяет при минимальных затратах получить максимум информации про изучаемые процессы или явления.

- пассивный эксперимент не зависит от экспериментатора, который в данном случае выступает сторонним наблюдателем.

При планировании эксперимента исследуемый объект представляется в виде «черного ящика», на который воздействуют управляемые и неуправляемые факторы:

тут — управляемые факторы; - неуправляемые факторы, - параметры оптимизации, которые могут охарактеризовать работу объекта.

Факторы. Каждый фактор может принимать определенное количество значений называемых уровнями факторов. Множество возможных уровней фактора называется областью определения фактора, которые могут быть непрерывными или дискретными, ограниченными и неограниченными. Факторы могут быть:

- совместимыми: предполагается допустимость любой комбинации факторов, которая не должна влиять на сохранение изучаемого процесса;

- независимыми: между факторами должна отсутствовать корреляционная связь, то есть имеется возможность изменять значение каждого из рассматриваемых в системе факторов независимо друг от друга. Нарушение хотя бы одно­го из этих требований приводит либо к невозможности применения планирования эксперимента, либо к весьма серьезным трудностям. Правильный выбор факторов позволяет четко задавать условия опыта.

Исследуемые параметры должны удовлетворять ряду требований:

- эффективность, способствующая скорейшему достижению цели;

- универсальность, характерная не только для исследуемого объекта;

- статистическая однородность, предполагающая соответствие с точностью до погрешности эксперимента определенному набору значений факторов определенного значения фактора ;

- количественное выражение одним числом;

- простота вычислений;

- существование при любом состоянии объекта.

Модель. Зависимость между выходным параметром (откликом) и входными параметрами (факторами) называется функцией откли­ка и имеет следующий вид:

(1)

Тут — отклик (результат эксперимента); — незави­симые переменные (факторы), которые можно варьировать при постановке экспериментов.

Отклик. Отклик – это результат опыта в соответствующих условиях, который также называют функцией цели, критерием эффективности, критерием оптимальности, параметром оптимизации и др.

В теории планирования эксперимента к параметру оптимизации предъявляются требования, выполнение которых необходимо для успешного решения задачи. Выбор параметра оптимизации должен базироваться на четко сформулированной задаче, на ясном понима­нии конечной цели исследования. Параметр оптими­зации должен быть эффективным в статистическом смысле, то есть определяться с достаточной точностью. При большой ошибке его определения необходимо увеличивать число параллельных опытов.

Желательно, чтобы параметров оптимизации было как можно меньше. Однако не следует добиваться уменьшения числа параметров оптимизации за счет полноты характеристики системы. Желатель­но также, чтобы система во всей полноте характеризовалась просты­ми параметрами оптимизации, имеющими ясный физический смысл. Естественно, что простой, с ясным физическим смыслом параметр оптимизации защищает экспериментатора от многих ошибок и избавляет его от многих трудностей, связанных с решением различных методических вопросов экспериментирования и технологиче­ской интерпретации полученных результатов.

Геометрический аналог параметра (функции отклика), соответствующий уравнению (1), называется поверхностью отклика, а пространство, в котором строят указанную поверхность, — факторным пространством. В простейшем случае, когда исследу­ется зависимость отклика от одного фактора, поверхность откли­ка представляет собой линию на плоскости, то есть в двухмерном пространстве. В общем случае, когда рассматриваются факто­ров, уравнение (1) описывает поверхность отклика в - мерном пространстве. Так, например, при двух факторах факторное пространство представляет собой факторную плоскость.

Целью планирования эксперимента является получение математической модели исследуемого объекта или процесса. При весьма ограниченных знаниях о механизме процесса аналитическое выражение функции отклика неизвестно, поэтому обычно используют полиномиальные математические модели (алгебраические полиномы) называемые уравнениями регрессии, общий вид которых:

(2)

где – выборочные коэффициенты регрессии, которые можно получить, пользуясь результатами эксперимента.

4. К основным этапам планирования эксперимента можно отнести:

1.Сбор, изучение, анализ всех данных об объекте.

2. Кодирование факторов.

3. Составление матрицы планирования эксперимента.

4. Проверка воспроизводимости опытов.

5. Расчет оценок коэффициентов регрессионного уравнения.

6. Проверка значимости коэффициентов регрессии.

7. Проверка адекватности полученной модели.

8. Переход к физическим переменным.

Литература

1. Конспект лекций.

4.1 Цепи Маркова. Случайные функции. Метод Монте - Карло. Имитационное моделирование. Сетевое планирование. Динамическое и целочисленное программирование

План лекции.

1. Методы Монте-Карло.

2. Метод статистических испытаний (методы Монте-Карло)

Вопросы лекции.


Поделиться:



Популярное:

  1. Анализ общего качества уравнения регрессии.
  2. Билет Классическая и обобщенная модели множественной линейной регрессии.
  3. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
  4. Глава II. Сравнение перевода и английского текста романа-эпопеи В. Гюго Отверженные
  5. Диагностика банкротства по системе финансовых коэффициентов
  6. Доверительные интервалы для коэффициентов: реальные статистические данные
  7. Задачи на разностное и кратное сравнение
  8. Значения коэффициентов облученности
  9. Значимость коэффициентов регрессии проверяется по критерию
  10. Индекс корреляции, теоретическое корреляционное отношение. Коэффициент детерминации для нелинейных моделей. Применение МНК для нелинейных моделей.
  11. Кант, Шеллинга и Фихте сравнение философии
  12. Клинико-электроэнцефалографичские корреляции у больных шизофренией с вялым течением в процессе лечебного голодания и последующего питания


Последнее изменение этой страницы: 2016-06-05; Просмотров: 807; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь