Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Краткая классификация металлов и сплавов.Стр 1 из 9Следующая ⇒
Металлургия Металлургия – это наука о способах получения металлов и металлических сплавов. Сплав – это соединение двух или более компонентов, главным из которых является металл.
Основоположник металлургии – Д.К.Чернов История человечества неразрывно связана с использованием металлов. 5-4 тысячелетие до н.э. – медный век (выплавка меди и олова) 3-2 тысяч. до н.э. – бронзовый век (сплав меди с оловом) 2-1 тыс. до н.э. – железный век ( железо восстановленное из руды, сталь – сплав железа с углеродом) В настоящее время известно около 80 металлов. Среди металлов железо занимает третье место по распространенности в земной коре (4, 2 %) после кремния(26 %) и алюминия(7, 4 %). Железо в недрах земли в чистом виде не встречается. Оно входит в состав горных пород в различных химических соединениях. В природе известно более 300 разновидностей горных пород, содержащих железо, но далеко не все они представляют собой железные руды. Железными рудами принято называть такие горные породы, из которых экономически выгодно извлекать железо методом плавки. Экономическая целесообразность извлечения железа из руд зависит от уровня развития техники и характеристики месторождений. Краткая классификация металлов и сплавов. I Черные металлы и сплавы (Fe+C) 1. Сталь (содержит до 2, 14% С) 2. Чугун (содержит от 2, 14 до 6, 67% С) 3. Ферросплавы (> 6, 67% С) II – Цветные металлы и сплавы 1. Легкие а) на основе Al (Al+Si) – силумин б) на основе Mg (↑ корозион. стойкость) и т.д. 2. Тяжелые а) на основе Cu - Cu+Sn (свинец) → бронза - Cu+Zn (цинком)→ латунь б) на основе Sn в)на основе Pb и т. д. 3. Тугоплавкие а) На основе Ti – титана (↑ тверд.) б) На основе Mo – молибдена в) На основе Ni – никеля г) На основе Со – кобальта Металлы склонны к окислению, поэтому в земной коре они содержатся виде химических соединений (исключение золото, платина, серебро, медь.)
Общая масса металлов в земной коре – 25% из них: Al = 7, 4% Zn=0, 005% Fe=4, 2% Ag=0, 00001% Cu=0, 01% Au=0, 0000005%
Производство чугуна Чугун – сплав железа с углеродом содержащем углерода более 2, 14% с присутствием Si=4%, Mn=2%, S, P. Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тысячелетии до нашей эры. Цель доменного производства состоит в получении чугуна из железных руд путем их переработки в доменных печах. Железные руды вносят в доменную печь химически связанное с другими элементами железо. Восстанавливаясь и науглераживаясь в печи, железо переходит в чугун. С марганцевой рудой в доменную печь вносится марганец для получения чугуна требуемого состава.
Чугун производят в Доменных печах Исходные материалы для плавки Сырыми материалами доменной плавки являются · железные и марганцевые руды · флюсы · топливо 1.Руда – природное минеральное сырьё содержащие металл, который необходимо извлечь наиболее экономичным способом. В земной коре железо распространено достаточно широко — на его долю приходится около 4, 1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Среди известных видов руд наиболее распространены в природе руды осадочного происхождения. Из этих руд выплавляется более 90 % чугуна. Железная руда состоит из минерала (орудняющего вещества), пустой породы и примесей. Главной частью руды является рудный минерал, в состав которого входит железо. Чаще всего железо в минерале химически связано с кислородом, реже с другими элементами и соединениями. Пустая порода состоит из кремнезема, глинозема, извести. Примеси руд делятся на полезные и вредные. Полезными примесями считаются марганец, хром, никель, ванадий, вольфрам, молибден и др. Вредные примеси – сера, фосфор, мышьяк, цинк, свинец и в большинстве случаев медь – либо ухудшают качество металла, либо разрушающе действуют на огнеупорную футировку доменной печи.
Состав руды: 1. Рудный минерал 2.Пустая порода – минералы не осложняющие переработку руды→ легко переходят в шлаки 3.Примеси. Вредные примеси сера, фосфор, мышьяк → осложняющие переработку В зависимости от типа рудного минерала железные руды делятся на четыре основные группы: а) Красный железняк (гематит) 45-65% Fe Красный железняк или гематитовая руда. Минерал гематит – безводный оксид железа, в чистом виде содержит 70 % железа и 30 % кислорода. Это наиболее распространенная железная руда. б) Бурый железняк (лимонит) 25-50% Fe Бурый железняк представлен железосодержащими минералами водных оксидов железа, которые содержат от 59, 8 % до 69 % железа. в) Магнитный железняк (магнетит) 40-70% Fe Магнитный железняк или магнетитовая руда. Минерал – магнетит (72, 4 % железа и 27, 6 % кислорода)
Чем выше содержание железа в железной руде, тем экономичнее и производительнее работает доменная печь Кроме перечисленных разновидностей железных руд, железо в значительном количестве (46, 6%) содержится в серном колчедане или пирите. Однако пирит в доменную плавку не дают, его используют в качестве сырья в сернокислотной промышленности, а отходы в виде окисленного железа применяют при производстве агломерата. Также находят промышленное применение бедные железные руды: магнетитовые и гематитовые кварциты, в которых содержится до 45 % кремнезема в виде свободного кварца. Кварциты обогащают, получая железнорудный концентрат, содержащий более 60 % железа. Критерием оценки железных руд являются: 1. Содержание железа. 2. Тип основного железосодержащего минерала. 3. Состав и свойства пустой породы. 4. Содержание вредных примесей. 5. Стабильность химического состава. 2.Флюсы - необходимы для удаления из доменной печи тугоплавких пустых пород. Сплавляясь с ними они образуют легко выводимые шлаки. Флюсы – окатыши из известняка. Флюсом называются добавки, загружаемые в доменную печь для понижения температуры плавления пустой породы руды, офлюсования золы кокса и придания шлаку требуемых технологией выплавки чугуна физико-химических свойств. Для руд с кремнеземистой (кислой) пустой породой в качестве флюса используют материалы, содержащие оксиды кальция и магния: известняк и доломитизированный известняк. Важнейшим требованием, предъявляемым к основным флюсам, является низкое содержание в них кремнезема и глинозема и вредных примесей серы и фосфора. 3.Кокс – из каменного угля. Является топливом, а также восстанавливает оксиды железа. (Вместо кокса может использоваться природный газ.) Его роль состоит в обеспечении процесса теплом и восстановительной энергией. Кроме того, кокс разрыхляет столб шихтовых материалов и облегчает прохождение газового потока в шихте доменной печи. В качестве топлива в современной доменной плавке применяют кокс, мазут, природный и коксовый газы и каменноугольную пыль. Основным видом топлива является кокс. Коксом называется пористое спекшееся вещество, остающееся после удаления из каменного угля летучих веществ при нагревании его до 950-1200С без доступа воздуха. Это единственный материал, который сохраняет форму куска в доменной печи на всем пути движения от колошника к горну. Благодаря этому обстоятельству обеспечивается прохождение газового потока через слой жидких, полужидких и твердых материалов в доменной печи. Загружаемый в доменную печь кокс не должен содержать ни мелких кусков, ухудшающих газопроницаемость шихты, ни чрезмерно крупных кусков, которые, как правило, поражены трещинами и легко разрушаются в печи с образованием мелких фракций. Кокс должен быть пористым для обеспечения хорошей горючести в горне печи и обладать высокой теплотой сгорания для получения требуемого количества тепла и необходимой температуры. Теплота сгорания кокса зависит от содержания в нем углерода, которое определяется содержанием золы, вредных примесей и летучих веществ в коксе. Чем выше содержание золы, вредных примесей и летучих веществ в коксе, тем меньше в нем углерода и меньше теплота его сгорания. Кроме того, с увеличением содержания золы и серы в коксе возрастают количество шлака, расход тепла на его расплавление и снижается механическая прочность кокса, а с увеличением содержания серы и фосфора в коксе ухудшается качество чугуна. Повышенное содержание летучих веществ в коксе свидетельствует о незавершенности процесса коксования, что приводит к снижению механической прочности кокса. Чрезмерно низкое содержание летучих в коксе, получающееся при пережоге кокса, также отрицательно сказывается на его качестве. Поэтому кокс должен содержать по возможности меньше золы, серы, фосфора и умеренное количество летучих веществ. В коксе всегда содержится влага, поступающая в кокс при его тушении на коксохимическом заводе или из атмосферы. В связи с тем, что кокс в доменной печи загружают по массе, содержание влаги в коксе должно выдерживаться постоянным для сохранения заданного теплового режима печи.
Подготовка исходных материалов к плавке Шихта - подготовленные к плавке исходные материалы (руда, флюсы и топливо) 1. Дробление – измельчение руды до 30-80мм. и сортировка руды по размеру кусков.
Доменная печь работает нормально, если она загружена кусковым материалом оптимального размера. Слишком крупные куски руды за время опускания их в печи не успевают прогреваться на всю длину, часть материала расходуется бесполезно. Слишком мелкие куски плотно прилегают друг к другу и нет выхода для газов. Оптимальный кусок 30-80 мм. Поэтому руду с кусками больше 100 мм подвергают дроблению. Мелочь также не пригодна к плавке и ее подвергают окускованию. Для этого в металлургии применяют агломерацию – окускование путем спекания. Исходный материал для агломерации рудная мелочь и колошниковая пыль (отход доменного производства) + мелкий кокс (до 3 мм) + недопекшийся агломерат + измельченный известняк (до 20 мм) = шихта. · Слегка увлажненную и перемешенную шихту слоем 200-300 мм загружают на решетки тележек образующих рабочую ленту агломерационной машины, затем поджигают. Воздух для горения просасывается через слой шихты с помощью вакуумных устройств, расположенных под решетками В зоне горения t=1500°C происходит спекание шихты в пористый продукт – агломерат. Достоинства агломерата: 1) пористость и прочность кусков 2) введение флюса - известняка увеличивает производительность доменной печи и снижает расход кокса. · Еще один способ окускования – брикетирование. Это путем прессования смеси порошковых мат-лов со связующими материалами (глиной, жидким шлаком, смолой и т.д.) · Следующий способ окускования производство окатышей. Это перемешивание рудной мелочи и пыли небольшим количеством глины или извести. После увлажнения эту смесь помещают в барабан или наклонную чашку. Шихта при перемещении слипается, образуя окатыши 25-30 мм. Затем их сушат или обжигают для упрощения. 2. Усреднение Железные руды по условиям залегания и добычи всегда имеют непостоянный химический состав. Значительные и частые колебания содержания железа и пустой породы в рудах вызывают нарушение теплового состояния доменной печи и химического состава шлака. Это приводит к нарушению ровного хода печи, при котором неизбежны повышение расхода кокса, снижение производительности печи и ухудшение качества выплавляемого чугуна. Чтобы уменьшить отрицательное влияние непостоянства химического состава руд на показатели доменной плавки, руды подвергают усреднению. Усреднением называют перемешивание железорудных материалов с целью выравнивания химического и гранулометрического составов. В связи с тем, что почти все добываемые руды подвергают окуксованию, основное назначение усреднения состоит прежде всего в уменьшении колебаний содержания железа и кремнезема в рудах. Необходимо добиться такого усреднения руд, при котором колебания содержания железа и кремнезема в руде не превышали бы 0, 5 % от среднего значения. 3.. Обогащение руды - выделение пустой породы с получением концентрата, содержащего 65-66% Fe Обогащением называется процесс разделения рудного минерала и пустой породы с целью повышения содержания металла в руде и уменьшения содержания пустой породы, а в некоторых случаях и вредных примесей. Все способы обогащения основаны на различии физических свойств рудных минералов и пустой породы. В результате обогащения руды получают: · концентрат – продукт, в котором содержится большая часть извлекаемого металла; · хвосты – отходы при обогащении руды, в которых содержится незначительное количество металла; · промежуточный продукт, в котором содержание металла больше, чем в хвостах и меньше, чем в концентрате. I. Основной способ обогащения – магнитный. Минералы отделяют магнитом или электромагнитом. II. Другой способ обогащения – гравитационный. (основан на осаждении минерала, т.к. он имеет большую плотность) Основан на различии плотности и скорости падения зерен в жидкости и на воздухе. Т.е. рудной минерал тонет, а частицы пустой породы всплывают. Простейший вид - это промывка водой железной руды для удаления песчано-глинистой пустой породы. III. Ещё один способ обогащения – флотация. (основан на способности некоторых минералов прилипать к водным пузырькам) используется метод редко Основан на избирательном применении некоторых минеральных частиц, взвешенных в водной среде, к поверхности пузырьков воздуха и поднятия их частиц на поверхность. Доменная плавка Доменный процесс представляет собой совокупность механических, физических и физико-химических явлений, протекающих в работающей доменной печи. В химическом отношении доменный процесс является восстановительно- окислительным: из оксидов восстанавливается железо, а окисляются восстановители. Однако доменный процесс принято называть восстановительным, так как цель его состоит в восстановлении оксидов железа до металла. Агрегатом для осуществления доменного процесса служит печь шахтного типа Важнейшим условием осуществления доменного процесса в рабочем пространстве печи является непрерывное встречное движение и взаимодействие опускающихся шихтовых материалов, загружаемых в печь через колошник, и восходящего потока газов, образующегося в горне при горении углерода кокса в нагретом до 1000 – 1200( С воздухе (дутье), который нагнетается в верхнюю часть горна через расположенные по его окружности фурмы. К дутью может добавляться технический кислород, природный газ, водяной пар. Домна – грандиозная конструкция – это шахтная печь высотой 30-50 метров позволяют выплавить в сутки до 5000 т. чугуна. Толстые стены (70 см) из огнеупорной глины, снаружи обшиты кожухом из стальной брони.
Домна – сложнейшее инженерное сооружение высотой более 60 м и диаметром 10 м, снабженное системой контроля и управления, предназначенное для выплавки чугуна – продукта химико-восстановительных процессов. Главное в любой технологии – это оптимизация процессов и высокая производительность аппаратов, экономичность производства. Остановимся на этом вопросе (рис. 1, г).
Подготовленные исходные материалы называются шихта. Сущность доменной плавки: раздельная загрузка шихты→ горение кокса→ нагрев шихты→ взаимодействие её с горячими газами→ восстановление железа из окислов и соединение его с углеродом→ образование в нижней части печи 2-х жидких слоев – чугун + шлак. Схему доменной печи можно подробно рассмотреть в литературе по данной дисциплине Основные части доменной печи: колошник, шахта, распар, заплечики, фурменный пояс, горн, лещадь. 1) В верхней части расположен засыпной аппарат, состоящий из двух поочередно опускающихся конусов (чтобы доменные газы не могли вырваться в атмосферу) Шихтовые материалы загружают в доменную печь при помощи засыпного аппарата отдельными порциями – подачами. Они располагаются на колошнике чередующимися слоями кокса, руды или агломерата и флюса при работе на не полностью офлюсованном агломерате. Загрузку подач производят через 5 – 8 мин. по мере освобождения пространства на колошнике в результате опускания материалов. Материалы на колошник подают специальными тележками – скипами, перемещающимися по рельсам наклонного моста. Объем материалов одной подачи соответствует объему нескольких скипов, поэтому подача на колошник подается по частям несколькими скипами. При этом одну часть скипов подачи загружают коксом, а другую – железосодержащими компонентами и флюсом. При полностью офлюсованном агломерате подача состоит только из скипов с агломератом и коксом. Два подъемника с ковшами доставляют шихту в верхнюю воронку → конус опускается → шихта загружается в нижнюю и в печь. 2) Для осуществления процесса горения через фурменные отверстия подается в горн горячий кислород (1200°С)→ горение → образуется углекислота, которая взаимодействует с коксом. CO2+C=2CO Кокс поступает в горн нагретым до 1400 – 15000С. В зонах горения кокса углерод взаимодействует с кислородом дутья. Образующийся в зонах горения диоксид углерода при высокой температуре и избытке углерода неустойчив и превращается в оксид углерода. Таким образом, за пределами зон горения горновой газ состоит только из оксида углерода, азота и небольшого количества водорода, образовавшегося при разложении водяных паров или природного газа. Смесь этих газов, нагретая до 1800 – 2000( С, поднимается вверх и передает тепло материалам, постепенно опускающимся в горн. При взаимодействии жидких продуктов плавки с раскаленным коксом в заплечиках и горне происходит усиленное восстановление кремния, марганца и фосфора из их оксидов, растворенных в шлаке. Здесь же поглощенная металлом в ходе плавки сера переходит в шлак. Железо и фосфор печи полностью восстанавливаются и переходят в чугун, а степень восстановления кремния и марганца и полотна удаления из чугуна серы в большой мере зависят от температурных условий, химического состава шлака и его количества. Жидкие чугун и шлак разделяются в горне благодаря различным удельным массам. По мере скопления их в горне чугун выпускают через чугунную летку, а шлак – через шлаковые летки (верхний шлак) и чугунную летку во время выпуска чугуна (нижний шлак). Все перечисленные процессы протекают в доменной печи одновременно, оказывая взаимное влияние.
3) В нижней половине шахты - ЛЕЩАДИ начинается образование жидкого шлака из составных частей пустой породы руды и флюса. Понижению температуры плавления шлака способствуют невосстановленные оксиды железа и марганца. В стекающем вниз шлаке под действием возрастающей температуры постепенно расплавляется вся пустая порода и флюс, а после сгорания кокса – и зола. Разливка стали
Из разливочного ковша сталь разливают в изложницы - чугунные формы для изготовления слитков. Слитки используют для: отливок до 25 тонн или поковок до 300 тонн. Способы разливки 1. Разливка сверху (для углеродистых сталей)
2. Сифонная разливка (для легированных. высококачественных сталей)
3.Непрерывная разливка (машины непрерывного литья – вытягивание слитков из кристаллизаторов
Введение Правильно выбрать способ получения заготовки – означает определить рациональный технологический процесс её получения с учётом материала детали, требований к точности её изготовления, технических условий, эксплуатационных характеристик и серийности выпуска. Поэтому очень важен экономически и технологически обоснованный выбор вида заготовки для данного производства. Важнейшим направлением повышения эффективности литейного процесса является: · улучшение качества, · надежности, · точности и шероховатости отливок с максимальным приближением их к форме готовых изделий путем внедрения новых технологических процессов · улучшения качества литейных сплавов, · устранение вредного воздействия на окружающую среду и улучшения условий труда. Общие сведения о литейном производстве Литейная технология – это процесс получения литых заготовок путем заливки расплавленного металла в формы, полость которых повторяет конфигурацию отливки. При охлаждении металл затвердевает и принимает конфигурацию полости формы. Литьем получают разнообразные конструкции отливок массой от нескольких грамм до 300т, длиной от нескольких сантиметров до 20м, со стенками толщиной 0, 5-500 мм (блоки цилиндров, поршни, коленчатые валы, корпуса и крышки редукторов, зубчатые колеса, станины станков, станины прокатных станов, турбинные лопатки и т.д.). Отливки получают из черных сплавов (чугуны, стали) и цветных сплавов (алюминиевых, магниевых, медных, цинковых, титановых и др.). Для получения расплава применяют шихтовые материалы: -небольшие слитки металлургического производства (чушки) -отходы собственного производства -лом -флюсы Требования к литейным материалам: 1. Состав материалов должен обеспечивать получение в отливке заданных физико-механических и физико-химических свойств; свойства и структура должны быть стабильными в течение всего срока эксплуатации отливки. 2. Материалы должны обладать хорошими литейными свойствами (высокой жидкотекучестью, небольшой усадкой, низкой склонностью к образованию трещин и поглощению газов, герметичностью), хорошо свариваться, легко обрабатываться режущим инструментом. Они не должны быть токсичными и вредными для производства. Необходимо, чтобы они обеспечивали технологичность в условиях производства и были экономичными. Литейные свойства сплавов. Получение качественных отливок без раковин, трещин и других дефектов зависит от литейных свойств сплавов, которые проявляются при заполнении формы, кристаллизации и охлаждении отливок в форме. К основным литейным свойствам сплавов относят: Жидкотекучесть – способность расплавленного металла течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки. Жидкотекучесть зависит от многих факторов: от температурного интервала кристаллизации, вязкости и поверхностного натяжения расплава, температуры заливки и формы, свойств формы и т.д. Чистые металлы и сплавы, затвердевающие при постоянной температуре, обладают лучшей жидкотекучестью, чем сплавы, затвердевающие в интервале температур (твердые растворы). Чем выше вязкость, тем меньше жидкотекучесть. С увеличением поверхностного натяжения жидкотекучесть понижается. С повышением температуры заливки расплавленного металла и формы жидкотекучесть улучшается. Увеличение теплопроводности материала формы снижает жидкотекучесть. Так, песчаная форма отводит теплоту медленнее, и расплавленный металл заполняет ее лучше, чем металлическую форму. Наличие неметаллических включений снижает жидкотекучесть. Так же влияет химический состав сплава (с увеличением содержания серы, кислорода, хрома жидкотекучесть снижается; с увеличением содержания фосфора, кремния, алюминия, углерода жидкотекучесть увеличивается). Усадка – свойство металлов и сплавов уменьшать объем при охлаждении в расплавленном состоянии, в процессе затвердевания и в затвердевшем состоянии при охлаждении до температуры окружающей среды. Изменение объема зависит от химического состава сплава, температуры заливки, конфигурации отливки. Различают объемную и линейную усадку. В результате объемной усадки появляются усадочные раковины и усадочная пористость в массивных частях отливки. Для предупреждения образования усадочных раковин устанавливают прибыли – дополнительные резервуары с расплавленным металлом, а также наружные или внутренние холодильники. Линейная усадка определяет размерную точность полученных отливок, поэтому она учитывается при разработке технологии литья и изготовления модельной оснастки.
Линейная усадка составляет:
Газопоглощение – способность литейных сплавов в расплавленном состоянии растворять водород, азот, кислород и другие газы. При затвердевании и последующем охлаждении растворимость газов уменьшается, в результате их выделения в отливке могут образоваться газовые раковины и поры. Растворимость газов зависит от химического состава сплава, температуры заливки, вязкости сплава и свойств литейной формы. Ликвация – неоднородность химического состава сплава в различных частях отливки. Ликвация образуется в процессе затвердевания отливки, из-за различной растворимости отдельных компонентов сплава в его твердой и жидкой фазах. В сталях и чугунах заметно ликвируют сера, фосфор и Литейные сплавы 1. Чугун является наиболее распространенным материалом для получения фасонных отливок. Чугунные отливки составляют около 80 % всех отливок. Широкое распространение чугун получил благодаря хорошим технологическим свойствам. Из серого чугуна получают самые дешевые отливки (в 1, 5 раза дешевле, чем стальные, в несколько раз – чем из цветных металлов). Область применения чугунов расширяется вследствие непрерывного повышения его прочностных и технологических характеристик. Используют серые, высокопрочные, ковкие и легированные чугуны. Сущность литья в песчаные формы заключается в получении отливок из расплавленного металла, затвердевшего в формах, которые изготовлены из формовочных смесей путем уплотнения с использованием модельного комплекта. Литейная форма для получения отливок в песчаных формах представлена на рис.4. Литейная форма обычно состоит из верхней 1 и нижней 2 полуформ, которые изготавливаются в опоках 7, 8 – приспособлениях для удержания формовочной смеси. Полуформы ориентируют с помощью штырей 10, которые вставляют в отверстия ручек опок 11. Для образования полостей отверстий или иных сложных контуров в форме устанавливают литейные стержни 3, которые фиксируют посредством выступов, входящих в соответствующие впадины формы (знаки). Литейную форму заливают расплавленным металлом через литниковую систему. Литниковая система – совокупность каналов и резервуаров, по которым расплав поступает из разливочного ковша в полость формы. Основными элементами являются: литниковая чаша 5, которая служит для приема расплавленного металла и подачи его в форму; стояк 6 – вертикальный или наклонный канал для подачи металла из литниковой чаши в рабочую полость или к другим элементам; шлакоуловитель 12, с помощью которого удерживается шлак и другие неметаллические примеси; питатель 13 – один или несколько, через которые расплавленный металл подводится в полость литейной формы. Для вывода газов, контроля заполнения формы расплавленным металлом и питания отливки при ее затвердевании служат прибыли или выпор 4. Для вывода газов предназначены и вентиляционные каналы 9. Рис. 4. Литейная форма
Разновидности литниковых систем представлены на рис.3.
Рис. 3. Разновидности литниковых систем
Различают литниковые системы с питателями, расположенными в горизонтальной и вертикальной плоскостях. По способу подвода расплава в рабочую полость формы литниковые системы делят на: нижнюю, верхнюю, боковую. · Нижняя литниковая система (рис.3.б) – широко используется для литья сплавов, легко окисляющихся и насыщающихся газами (алюминий), обеспечивает спокойный подвод расплава к рабочей полости формы и постепенное заполнение ее поступающим снизу, без открытой струи металлом. При этом усложняется конструкция литниковой системы, увеличивается расход металла на нее, создается неблагоприятное распределение температур в залитой форме ввиду сильного разогрева ее нижней части. Возможно образование усадочных дефектов и внутренних напряжений. При такой системе ограничена возможность получения высоких тонкостенных отливок (при литье алюминиевых сплавов форма не заполняется металлом, если отношение высоты отливки к толщине ее стенки превышает , ).Нижний подвод через большое количество питателей часто используется при изготовлении сложных по форме, крупных отливок из чугуна. · Верхняя литниковая система (рис.3.в). Достоинствами системы являются: малый расход металла; конструкция проста и легко выполнима при изготовлении форм; подача расплава сверху обеспечивает благоприятное распределение температуры в залитой форме (температура увеличивается от нижней части к верхней), а следовательно, и благоприятные условия для направленной кристаллизации и питании отливки.Недостатки: падающая сверху струя может размыть песчаную форму, вызывая засоры; при разбрызгивании расплава возникает опасность его окисления и замешивания воздуха в поток с образованием оксидных включений; затрудняется улавливание шлака. Верхнюю литниковую систему применяют для невысоких (в положении заливки) отливок, небольшой массы и несложной формы, изготовленных из сплавов не склонных к сильному окислению в расплавленном состоянии (чугуны, углеродистые конструкционные стали, латуни). · Боковая литниковая система (рис.3.а). Подвод металла осуществляется в среднюю часть отливки (по разъему формы).Такую систему применяют при получении отливок из различных сплавов, малых и средних по массе деталей, плоскость симметрии которых совпадает с плоскостью разъема формы. Является промежуточной между верхней и нижней, и следовательно сочетает в себе некоторые их достоинства и недостатки. Иногда при подводе металла снизу и сверху используют массивные коллекторы.
Черные сплавы Черными называют сплавы на основе железа.
Сплав-это двух или многокомпонентная система, основным компонентом которой является металл. Сталь – сплав железа с углеродом, где содержание углерода не более 2, 14% Чугун – сплав железа с углеродом, где содержание углерода от 2, 14% до 6, 67% В сталях всегда присутствуют примеси: кремний, марганец, сера, фосфор. · Содержание марганца не превышает 0, 5…0, 8 %. Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. · Содержание кремния не превышает 0, 35…0, 4 %. Кремний, дегазируя металл, повышает плотность слитка. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести, σ в. Но наблюдается некоторое снижение пластичности, что снижает способность стали к вытяжке · Содержание фосфора в стали 0, 025…0, 045 %. Фосфор, растворяясь в феррите, искажает кристаллическую решетку и увеличивает предел прочности σ в и предел текучести σ т, но снижает пластичность и вязкость. Располагаясь вблизи зерен, увеличивает температуру перехода в хрупкое состояние, вызывает хладоломкость, уменьшает работу распространения трещин, Повышение содержания фосфора на каждую 0, 01 % повышает порог хладоломкости на 20…25oС. Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 1210; Нарушение авторского права страницы