Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Правила перевода чисел из одной системы счисления в другую



Из 16 или 8 в 2

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр) (см. таблицу).
Двоичная (Основание 2) Восьмеричная (Основание 8) Десятичная (Основание 10) Шестнадцатиричная (Основание 16)    
  триады   тетрады    
0 1 0 1 2 3 4 5 6 7 000 001 010 011 100 101 110 111 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111    

Например:

а) Перевести 305.48 " 2" с.с.

б) Перевести 7B2.E16" 2" с.с.

16А16=1 0110 10102 3458=11 100 1012

Из 2 в 16 или 8

Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Например:

а) Перевести 1101111001.11012 " 8" с.с.

б) Перевести 11111111011.1001112 " 16" с.с.

10001010100101012=1000 1010 1001 0101=8A9516= 1 000 101 010 010 101=1052258

Из 16 в 8 и обратно

Перевод из восьмеричной в шестнадцатеричную систему и обратно осуществляется через двоичную систему с помощью триад и тетрад.

Например:

Перевести 175.248 " 16" с.с.

Результат: 175.248 = 7D.516.

Из 10 в любую с.с.

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Например:

а) Перевести 18110 " 8" с.с.

Результат: 18110 = 2658

б) Перевести 62210 " 16" с.с.

Результат: 62210 = 26E16

Перевод правильных дробей
Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основание той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.

Например:

Перевести 0.312510 " 8" с.с.

Результат: 0.312510 = 0.248

Замечание. Конечной десятичной дроби в другой системе счисления может соответствовать бесконечная (иногда периодическая) дробь. В этом случае количество знаков в представлении дроби в новой системе берется в зависимости от требуемой точности.

Например:

Перевести 0.6510 " 2" с.с. Точность 6 знаков.

Результат: 0.6510 0.10(1001)2

Для перевода неправильной десятичной дроби в систему счисления с недесятичным основанием необходимо отдельно перевести целую часть и отдельно дробную.

Например:

Перевести 23.12510 " 2" с.с.

1) Переведем целую часть: 2) Переведем дробную часть:

 


Таким образом: 2310 = 101112; 0.12510 = 0.0012.
Результат: 23.12510 = 10111.0012.

Необходимо отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Из 2, 8 или 16 в 10

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

Например:

a)10101101.1012 = 1 27+ 0 26+ 1 25+ 0 24+ 1 23+ 1 22+ 0 21+ 1 20+ 1 2-1+ 0 2-2+ 1 2-3 = 173.62510

б) Перевести 703.048 " 10" с.с.

703.048 = 7 82+ 0 81+ 3 80+ 0 8-1+ 4 8-2 = 451.062510

в) Перевести B2E.416 " 10" с.с.

B2E.416 = 11 162+ 2 161+ 14 160+ 4 16-1 = 2862.2510

Схема перевода чисел из одной системы счисления в другую


Aрифметические операции в позиционных системах счисления

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

Сложение

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево

 

Таблица двоичного сложения Таблица двоичного вычитания Таблица двоичного умножения
0+0=0 0+1=1 1+0=1 1+1=10 0-0=0 1-0=1 1-1=0 10-1=1 0 0=0 0 1=0 1 0=0 1 1=1

При сложении двоичных чисел в каждом разряде производится сложение цифр слагаемых и переноса из соседнего младшего разряда, если он имеется. При этом необходимо учитывать, что 1+1 дают нуль в данном разряде и единицу переноса в следующий.

Например:

Выполнить сложение двоичных чисел:
а) X=1101, Y=101;

Результат 1101+101=10010.

б) X=1101, Y=101, Z=111;

Результат 1101+101+111=11001.

Таблица сложения в 8-ой системе счисления

2+2=4 3+2=5 4+2=6 5+2=7 6+2=10 7+2=11
2+3=5 3+3=6 4+3=7 5+3=10 6+3=11 7+3=12
2+4=6 3+4=7 4+4=10 5+4=11 6+4=12 7+4=13
2+5=7 3+5=10 4+5=11 5+5=12 6+5=13 7+5=14
2+6=10 3+6=11 4+6=12 5+6=13 6+6=14 7+6=15
2+7=11 3+7=12 4+7=13 5+7=14 6+7=15 7+7=16

Таблица сложения в 16-ой системе счисления

+ A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A A B C D E F
B B C D E F 1A
C C D E F 1A 1B
D D E F 1A 1B 1C
E E F 1A 1B 1C 1D
F F 1A 1B 1C 1D 1E

 

Вычитание


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 17650; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.025 с.)
Главная | Случайная страница | Обратная связь