Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Перевод чисел из одной системы счисления в другую



Двоичная система счисления

 

В двоичной (binary) системе счисления всего две цифры, называемые дво­ичны­ми (binary digits). Сокращение этого наименования привело к появлению тер­мина бит, ставшего наз­ванием разряда двоичного числа. Веса разрядов в дво­ичной системе изменяются по степе­ням двойки. Поскольку вес каждого раз­ря­да умножается либо на 0, либо на 1, то в резуль­тате значение числа опреде­ляется как сумма соответствующих значений степеней двойки. Если какой-ли­бо разряд двоичного числа равен 1, то он называется значащим разрядом. За­пись числа в двоичном виде намного длиннее записи в десятичной системе счисления.

 

Арифметические действия, выполняемые в двоичной системе, подчиня­ют­ся тем же правилам, что и в десятичной системе. Только в двоичной сис­теме перенос единиц в старший разряд возникает чаще, чем в десятичной. Вот как выглядит таблица сложения в двоичной системе:

 

0 + 0 = 0 0 + 1 = 1

1 + 0 = 1 1 + 1 = 10 (перенос в старший разряд)

 

 

Таблица умножения для двоичных чисел еще проще:

0 * 0 = 0 0 * 1 = 0 1 * 0 = 0 1 * 1 = 1

 

Пример выполнения операции сложения в двоичной системе счисления:

 

1 1 1

1 0 1 12 Красным цветом показан перенос из младших разрядов в

+ 1 1 02 старшие

 
 


1 0 0 0 12

 

Для проверки правильности выполнения операции переведем все три чис­ла из двоичной системы в 10-ую:

 

1011 = 1*23 + 1*21 + 1 = 8 + 2 + 1 = 1110

3 2 1 0

 

110 = 1*22 + 1*21 = 4 + 2 = 610

2 1 0

 

10001 = 1*24 + 1 = 16 + 1 = 1710

4 3 2 1 0

 

Сумма первых двух чисел (11 и 6) равна третьему числу (17), следователь­но операция выполнена верно.

Обратите внимание на то, что при добавлении к числу, состоящему из еди­ниц (11…1), еще одной единицы, получается число, равное 1 с количест­вом нулей, равным количеству единиц исходного числа, например:

1111 11112 + 1 = 1 0000 00002 = 28

 

Пример выполнения операции вычитания в двоичной системе счисле­ния:

Вычитание выполняется по тем же правилам, что и в 10-ой системе, но в 10-й системе при заеме единицы старшего разряда она превращается в 10 еди­­ниц младшего разряда, а в 2-й системе – в 2 единицы. Если нужно про­извести заем не в соседнем разряде, а далее влево, то из каждых двух единиц текущего разряда одна остается в этом разряде, а вторая передается вправо. Сравните:

9 9 10 1 1 2

1 0 0 010 1 0 0 02

- 1 - 1

9 9 910 1 1 12

 

Выполним в 2-й системе счисление вычитание 1710 – 610 :

0 1 1 2

1 0 0 0 12

- 1 1 02

 
 


1 0 1 12 = 1110 Проверка показывает, что вычитание выполнено верно.

 

Если в двоичной системе счисления из числа, являющегося степенью двойки, вычесть 1, то получается число, состоящее из единиц, количество которых равно количеству нулей двоичного числа, например:

28 - 1 = 1 0000 00002 – 1 = 1111 11112

1023 = 1024 – 1 = 210 – 1 = 11 1111 11112

 

Пример выполнения операции умножения в двоичной системе счисле­ния:

1 1 0 12 = 1310

* 1 0 12 = 510

 
 


1 1 0 1

+1 1 0 1

1 0 0 0 0 0 12 = 26 +1 = 64 +1 =6510 ( 13 * 5 = 65)

6 5 4 3 2 1 0

 

Рассмотрим подробнее, как процессор выполняет умножение двоичных чисел. Пусть надо умножить число 1101 на 101 (оба числа в двоичной сис­теме счисления). Машина де­лает это следующим образом: она берет число 1101 и, если первый справа элемент второго множи­теля равен 1, то она за­носит его в сумму. Затем сдвигает число 1101 влево на одну позицию, полу­чая тем самым 11010, и, если, второй элемент второго множителя равен еди­нице, то добавляет его к сумме. Если элемент второго множителя равен ну­лю, то сумма не изменяется. Этот процесс сдвигов и сложений повторяется.

Пример выполнения операции деления в двоичной системе счисле­ния:

 

Двоичное деление основано на методе, знакомом вам по десятичному де­ле­нию, т. е. сводится к выполнению операций умножения и вычитания. Вы­пол­нение основной процедуры - выбор числа, кратного делителю и пред­наз­наченного для уменьшения делимого, здесь проще, так как таким числом мо­гут быть только либо 0, либо сам делитель.

В качестве примера разделим 14310 = 100011112 на 1310 = 11012

 

1 0 0 0 1 1 1 1 1 1 0 1

- 1 1 0 1 1 0 1 12 = 1110

1 0 0 1 1

- 1 1 0 1

1 1 0 1

- 1 1 0 1

0

Проверка показывает, что деление выполнено верно (143 / 13 = 11).

 

Умножение или деление двоичного числа на 2 приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд соответственно вправо или влево:

10112 * 102 = 101102.

10112 / 102 = 101.12.

 

Ая система счисления

 

При наладке аппаратных средств ЭВМ или создании новой программы возникает необходимость " заглянуть внутрь" памяти машины, чтобы оценить ее текущее состояние. Но там все заполнено длинными последователь­нос­тя­ми нулей и единиц двоичных чисел. Эти последовательности очень неудобны для восприятия человеком, привыкшим к более короткой записи десятичных чисел. Кроме того, естественные возможности человеческого мышления не позволяют оценить быстро и точно величину числа, представленного, напри­мер, комбинацией из 16 нулей и единиц.

 

Для облегчения восприятия двоичного числа решили разбивать его на группы разрядов, например, по три или четыре разряда. Эта идея оказалась очень удачной, так как последовательность из трех бит имеет 8 комбинаций, а последовательность из 4 бит - 16. Числа 8 и 16 являются степенями двойки, поэтому легко находить соответствие с двоичными числами. Развивая эту идею, пришли к выводу, что группы разрядов можно закодировать, сократив при этом длину последовательности знаков. Для кодировки трех битов требу­ется восемь цифр, поэтому взяли цифры от 0 до 7 десятичной системы. Для кодировки же четырех битов необходимо шестнадцать знаков; для этого взя­ли 10 цифр десятичной системы и 6 букв латинского алфавита: A, B, C, D, E, F. Полученные системы, имеющие основания 8 и 16, назвали соответственно восьмеричной и шестнадцатеричной.

 

В восьмеричной (octal) системе счисления используются восемь раз­лич­ных цифр: 0, 1, 2, 3, 4, 5, 6, 7. Основание системы - 8. При записи отрица­тель­ных чисел перед последовательностью цифр ставят знак минус. Сло­же­ние, вычитание, умножение и деление чисел, представленных в восьмерич­ной системе, выполняются весьма просто, подобно тому, как это делают в общеизвестной десятичной системе счисления.

Пример выполнения операции сложения в восьмеричной системе счис­ления:

1 1 Красным цветом показан перенос из младших разрядов в старшие.

4 7 6 Выполнение операции в каждом разряде:

+ 3 4 1) 6 + 4 = 10 = 1*8 + 2 = 128

5 3 2 2) 1 + 7 + 3 = 1*8 + 3 = 138

3) 1 + 4 = 5

Проверим результат путем перевода чисел в десятичную систему счис­ления:

4768 = 4*82 + 7*8 + 6 = 318 318

348 = 3*8 + 4 = 28 +28

532 = 5*82 + 3*8 + 2 = 346 346

 

Пример выполнения операции вычитания в восьмеричной системе счис­ления:

7 8 Красным цветом показан перенос из старших разрядов в младшие.

5 3 2 Выполнение операции в каждом разряде:

- 3 4 1) 8 + 2 – 4 = 6

4 7 6 2) 7 + 2 - 3 = 1*8 + 3 = 138

3) 1 + 4 = 5

Пример выполнения операции умножения в восьмеричной системе счис­ле­ния:

5 4 54 4*4 = 16 = 2*8 + 0 = 208 (записываем 0)

* 3 4 * 4 2+ 5*4 = 22 = 2*8 + 6 = 268

2 6 0 260

+ 2 0 4

2 3 2 0 54 4*3 = 12 = 1*8 + 4 = 148 (записываем 4)

* 3 1 + 5*3 = 16 = 2*8 + 0 = 208

Выполним проверку:

548 = 5*8 + 4 = 4410 44

348 = 3*8 + 4 = 2810 * 28

23208 = 2*83 + 3*82 + 2*8 = 123210 352

+ 88 = 123210

Пример выполнения операции деления в восьмеричной системе счис­ле­ния:

 

2 3 2 08 5 48

- 2 0 4 3 48

2 6 0

- 2 6 0

Деление в восьмеричной системе близко делению в десятичной системе: нужно подобрать цифры частного. 232 делим на 54, в десятичной системе мы получили бы целое частное 4, но из предидущего примера мы знаем, что в восьмеричной системе 54*4 = 260, это много, попробуем взять цифру поменьше – 3, умножаем 54*3 = 204, эта цифра подходит, и т.д.

 

В различных языках про­грам­мирования запись восьмеричных чисел начинается с 0, например, запись 011 означает десятичное число 9.

Ая система счисления

 

В шестнадцатеричной (hexadecimal) системе счисления применяются десять цифр от 0 до 9 и шесть первых букв латинского алфавита:

10 – A 11 – B 12 – C 13 – D 14 – E 15 – F.

При запи­си отрицательных чисел слева от последовательности цифр ставят знак ми­нус.

Для того чтобы при написании компьютерных программ отличить чис­ла, записанные в шестнадцатеричной системе, от других, перед числом ста­вят 0x. То есть 0x11 и 11 - это разные числа.

Шестнадцатеричная система счисления широко используется при зада­нии различных оттенков цвета при кодировании графической информации (модель RGB). Так, в редакторе гипертекста Netscape Composer можно зада­вать цвета для фона или текста как в десятичной, так и шестнадцатеричной системах счисления (см. рисунок).

 

 

Пример выполнения операции сложения в 16-ой системе счис­ления:

1 1 Красным цветом показан перенос из младших разрядов

A 7 B16 Выполнение операции в каждом разряде:

+ C 816 B + 8 = 11 + 8 = 19 = 1*16 + 3 = 1316 (записываем 3)

B 4 316 1+7+С = 8+12 = 20 = 1*16 + 4 = 1416 (записываем 4)

1 + A = B

Проверим резульат путем перевода чисел в 10-ю систему:

A7B16 = 10*162 + 7*16 +11 = 2683

2 1 0 2683

C816 = 12*16 + 8 = 200 + 200

1 0 2883

B4316 = 11*162 + 4*16 +3 = 2883

2 1 0

 

Пример выполнения операции вычитания в 16-ой системе счис­ления:

 

15 16 Красным цветом показан заем из старших разрядов

B 4 316 Выполнение операции в каждом разряде:

- A 7 B16 16 + 3 – B = 19 -11 = 8

C 816 15 + 4 – 7 = 12 = C

B - 1 – A = 0

 

Умножение и деление в 16-ой системе обычно не выполняется ввиду сложности вычислений.

Примеры двоичного кодирования информации

 

Среди всего разнообразия информации, обрабатываемой на компьютере, значительную часть составляют числовая, текстовая, графическая и аудио­ин­формация. Познакомимся с некоторыми способами кодирования этих типов информации в ЭВМ.

Кодирование чисел

 

Существуют два основных формата представления чисел в памяти ком­пьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.

Кодирование целых чисел

Множество целых чисел, представимых в памяти ЭВМ, ограничено. Ди­а­пазон значений зависит от размера области памяти, используемой для раз­ме­ще­ния чисел. В k-разрядной ячейке может храниться 2k различных значе­ний целых чисел.

Целые числа могут занимать 1, 2, 4 или 8 байт (для 64-разрядных ма­шин).

Чтобы получить внутреннее представление целого положительного чис­ла N, хранящегося в k-разрядном машинном слове, необходимо:

 

1. перевести число N в двоичную систему счисления;

2. полученный результат дополнить слева незначащими нулями до k разрядов.

Код целого числа может рассматриваться как двоичное число со знаком или без знака.

При беззнаковом представлении все разряды используются для за­писи значения числа.

Пример:

Число 107 = 11010112 будет записано:

в 1 байт как 01101011

в 2 байта как 00000000 01101011

1-й байт 0-й байт

в 4 байта как 00000000 00000000 00000000 01101011

3-й байт 2-й байт 1-й байт 0-й байт

 

Минимальное беззнаковое число равно 0. Максимальное беззнаковое число равно 2n – 1, где n – кол-во двоичных разрядов, используемых для за­писи числа.

Например для 2-хбайтового представления max =11111111 111111112 =
1 00000000 00000000 – 1 = 216 – 1 = 65 535

 

Для записи чисел со знаком старший (левый) разряд отводится под знак числа. Если число неотрицательное, то в знаковый разряд записывается 0, в противном случае – 1, т.е. единица в знаковом разряде означает знак “ми­нус”.

Целые числа со знаком могут быть записаны в прямом, обратном и до­пол­­нительном коде.

В прямом коде число хранится в виде: знак+абсолютное значение (мо­дуль) числа.

В обратном коде в значении числа нули заменяют на единицы, а едини­цы на нули.

Дополнительный код получают путем прибавления 1 к обратному.

Обратный и дополнительный код неотрицательных чисел совпадает с прямым.

Обратный и дополнительный коды чисел позволяют заменить операцию вычитания сложением с отрицательным числом, что существенно упрощает устройство процессора. Варианты арифметических операций будут рас­смот­рены ниже.

Пример. Рассмотрим внутреннее представление целого отрицательного числа: -6 = 1102.

Однобайтовое:

Прямой код: 1000 0110

Обратный код: 1111 1001

Дополнительный: 1111 1001

+ 1

1111 1010

Четырехбайтовое:

Прямой код: 10000000 00000000 00000000 00000110

Обратный код: 1111111 1111111 11111111 11111001

Дополнительный: 1111111 1111111 11111111 11111001

+ 1

1111111 1111111 11111111 11111010

 

Для того, чтобы получить значение отрицательного числа, записанного в дополнительном коде, можно использовать один из двух алгоритмов:

1) вычесть 1 из дополнительного кода (получаем обратный код) и заме­нить все нули на единицы, а единицы на нули;

2) сначала заменить все нули на единицы, единицы на нули, затем при­ба­вить единицу к результату.

Пример: возьмем однобайтовый доп. код: 1111 1010 и используем второй алгоритм: 1111 1010 -- > - (0000 0101 + 1) = - 1102 = -6.

Случаи переполнения

Для обнаружения переполнения разрядной сетки знаковый разряд дуб­ли­руется. Такое представление чисел называется модифицированным допол­нительным кодом:

1) 65 00 100 0001

+ 97+ 00 110 0001

162 01 010 0010

Разные цифры в знаковых разрядах свидетельствуют о том, что произошло переполнение.

2) -65 11 011 1111

+ -97+ 11 001 1111

-162 10 101 1110

Переполнение!

Для проверки знаковых разрядов используют результат операции “ис­клю­­чающее ИЛИ”, которая дает значение 1 только если операнды различны.

Сравнение рассмотренных форм кодирования целых чисел со зна­ком показывает:

на преобразование отрицательного числа в обратный код компью­тер затрачивает меньше времени, чем на преобразование в дополнитель­ный код, так как последнее состоит из двух шагов — образования обратного кода и прибавления единицы к его младшему разряду;

время выполнения сложения для дополнительных кодов чисел мень­ше, чем для их обратных кодов, потому что в таком сложении нет пе­реноса единицы из знакового разряда в младший разряд результата, поэтому для ускорения выполнения расчетов используют дополнительный код.

 

Умножение и деление

Во многих компьютерах умножение производится как последователь­ность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции со­держит число ноль. В процессе выполнения операции в нем поочередно раз­мещаются множимое и результаты промежуточных сложений, а по завер­ше­нии операции — окончательный результат.

Другой регистр АЛУ, участвующий в выполнении этой операции, вна­ча­ле содержит множитель. Затем по мере выполнения сложений содержа­ще­еся в нем число уменьшается, пока не достигнет нулевого значения.

Для иллюстрации умножим 1100112 на 1011012.

 

 

 

Деление для компьютера является трудной операцией. Обычно оно реа­лизуется путем многократного прибавления к делимому дополнительного ко­да делителя.

 

Стандарт IEEE 754

Рекомендуемый для всех ВМ формат представления чисел с плаваю­щей запятой определен стандартом IEEE 754. Этот стандарт был разработан с целью облегчить перенос программ с одного процессора на другие и нашел ши­рокое применение практически во всех процессорах и арифметических сопроцессорах.

Рис. 2.24. Основные форматы IEEE 754: а — одинарный; б — двойной

Стандарт определяет 32-битовый (одинарный) и 64-битовый (двойной) фор­маты (рис. 2.24) с 8- и 11-разрядным порядком соответственно. Самый левый бит хранит знак числа. Основанием сис­темы счисления является 2.

Смещение равно соответственно 127 и 1023.

Максимальный порядок, который может иметь число: 127 и 1023.

Для повышения точности представления мантиссы используют прием скрытой единицы: поскольку в нормализованной мантиссе старшая цифра всегда равна 1, ее можно не хранить. Следовательно, при 4-хбайтовом пред­ставлении, мантисса фактически состоит из 24 разрядов. Скрытая единица при выполнении арифметических операций восстанавливается, а при записи результата удаляется.

 

Пример: рассмотрим 4-хбайтовый код числа 20.5:

20.5 = 10100.12 = 0.101001 * 25

Порядок (смещенный): 5+127 = 132 = 1000 01002

Мантисса: 101001 à 010010…0 (первая единица – скрытая, в конец мантиссы добавляются нули).

 

4-хбайтовое представление:

 

порядок мантисса

 

В 16-ом виде этот код будет выглядеть так: 42240000.

 

Определим максимальное число и его точность при 4-хбай­товом пред­ставлении.

Максимальное число:

.1…1 * 2127 = 1 * 2127 = 1.7 * 1038

Максимальное значение мантиссы:

1…1 (24 единицы) = 224 – 1 = 210*2.4 = 10242.4 = 1.7*107, следовательно точность представления мантиссы 7-8 значащих цифр.

Преимущества и недостатки

Преимущества

· Упрощён вывод чисел на индикацию — вместо последовательного деле­ния на 10 требуется просто вывести на индикацию каждый полубайт. Аналогично, проще ввод данных с цифровой клавиатуры.

· Для дробных чисел (как с фиксированной, так и с плавающей запятой) при переводе в человекочитаемый десятичный формат и наоборот не те­ряется точность.

· Упрощены умножение и деление на 10, а также округление.

По этим причинам двоично-десятичный формат применяется в каль­ку­ля­торах — калькулятор в простейших арифметических операциях должен выводить в точности такой же результат, какой подсчитает человек на бу­ма­ге.

Недостатки

  • Усложнены арифметические операции.
  • Требует больше памяти.
  • В двоично-десятичном коде BCD существуют запрещённые комбинации битов:

Запрещённые в BCD битовые комбинации:

1010 1011 1100 1101 1110 1111


Запрещённые комбинации возникают обычно в результате операций сложе­ния, так как в BCD используются только 10 возможных комбинаций 4-х битового поля вместо 16. Поэтому, при сложении и вычитании чисел фор­ма­та BCD действуют следующие правила:

  • При сложении двоично-десятичных чисел каждый раз, когда происхо­дит перенос бита в старший полубайт, необходимо к полубайту, от ко­торого произошёл перенос, добавить корректирующее значение 0110.
  • При сложении двоично-десятичных чисел каждый раз, когда встреча­ет­ся недопустимая для полубайта комбинация, необходимо к каждой не­до­пустимой комбинации добавить корректирующее значение 0110 с раз­решением переноса в старшие полубайты.
  • При вычитании двоично-десятичных чисел, для каждого полубайта, по­лучившего заём из старшего полубайта, необходимо провести кор­рек­­цию, вычитая значение 0110.

Пример операции сложения двоично-десятичных чисел:

Требуется: Найти число A = D + C, где D = 3927, C = 4856

Решение: Представим числа D и C в двоично-десятичной форме: D = 3927 = 0011 1001 0010 0111 C = 4856 = 0100 1000 0101 0110

Суммируем числа D и С по правилам двоичной арифметики:


 

* ** 0011 1001 0010 0111+ 0100 1000 0101 0110 ___________________= 1000 0001 0111 1101 - Двоичная сумма+ 0110 0110 - Коррекция ___________________ 1000 0111 1000 0011

'*' — тетрада, из которой был перенос в старшую тетраду

'**' — тетрада с запрещённой комбинацией битов

В тетраду, помеченую символом *, добавляем шестёрку т.к по правилам дво­ичной ариф­метики перенос унёс с coбой 16, а по правилам десятичной ариф­метики должен был унести 10. В тетраду, помеченую символом **, до­ба­в­ля­ем шестёрку, так как комбинация битов 1101 (что соответствует десятичному чис­лу 13) является запрещённой.

 

Двоичная система счисления

 

В двоичной (binary) системе счисления всего две цифры, называемые дво­ичны­ми (binary digits). Сокращение этого наименования привело к появлению тер­мина бит, ставшего наз­ванием разряда двоичного числа. Веса разрядов в дво­ичной системе изменяются по степе­ням двойки. Поскольку вес каждого раз­ря­да умножается либо на 0, либо на 1, то в резуль­тате значение числа опреде­ляется как сумма соответствующих значений степеней двойки. Если какой-ли­бо разряд двоичного числа равен 1, то он называется значащим разрядом. За­пись числа в двоичном виде намного длиннее записи в десятичной системе счисления.

 

Арифметические действия, выполняемые в двоичной системе, подчиня­ют­ся тем же правилам, что и в десятичной системе. Только в двоичной сис­теме перенос единиц в старший разряд возникает чаще, чем в десятичной. Вот как выглядит таблица сложения в двоичной системе:

 

0 + 0 = 0 0 + 1 = 1

1 + 0 = 1 1 + 1 = 10 (перенос в старший разряд)

 

 

Таблица умножения для двоичных чисел еще проще:

0 * 0 = 0 0 * 1 = 0 1 * 0 = 0 1 * 1 = 1

 

Пример выполнения операции сложения в двоичной системе счисления:

 

1 1 1

1 0 1 12 Красным цветом показан перенос из младших разрядов в

+ 1 1 02 старшие

 
 


1 0 0 0 12

 

Для проверки правильности выполнения операции переведем все три чис­ла из двоичной системы в 10-ую:

 

1011 = 1*23 + 1*21 + 1 = 8 + 2 + 1 = 1110

3 2 1 0

 

110 = 1*22 + 1*21 = 4 + 2 = 610

2 1 0

 

10001 = 1*24 + 1 = 16 + 1 = 1710

4 3 2 1 0

 

Сумма первых двух чисел (11 и 6) равна третьему числу (17), следователь­но операция выполнена верно.

Обратите внимание на то, что при добавлении к числу, состоящему из еди­ниц (11…1), еще одной единицы, получается число, равное 1 с количест­вом нулей, равным количеству единиц исходного числа, например:

1111 11112 + 1 = 1 0000 00002 = 28

 

Пример выполнения операции вычитания в двоичной системе счисле­ния:

Вычитание выполняется по тем же правилам, что и в 10-ой системе, но в 10-й системе при заеме единицы старшего разряда она превращается в 10 еди­­ниц младшего разряда, а в 2-й системе – в 2 единицы. Если нужно про­извести заем не в соседнем разряде, а далее влево, то из каждых двух единиц текущего разряда одна остается в этом разряде, а вторая передается вправо. Сравните:

9 9 10 1 1 2

1 0 0 010 1 0 0 02

- 1 - 1

9 9 910 1 1 12

 

Выполним в 2-й системе счисление вычитание 1710 – 610 :

0 1 1 2

1 0 0 0 12

- 1 1 02

 
 


1 0 1 12 = 1110 Проверка показывает, что вычитание выполнено верно.

 

Если в двоичной системе счисления из числа, являющегося степенью двойки, вычесть 1, то получается число, состоящее из единиц, количество которых равно количеству нулей двоичного числа, например:

28 - 1 = 1 0000 00002 – 1 = 1111 11112

1023 = 1024 – 1 = 210 – 1 = 11 1111 11112

 

Пример выполнения операции умножения в двоичной системе счисле­ния:

1 1 0 12 = 1310

* 1 0 12 = 510

 
 


1 1 0 1

+1 1 0 1

1 0 0 0 0 0 12 = 26 +1 = 64 +1 =6510 ( 13 * 5 = 65)

6 5 4 3 2 1 0

 

Рассмотрим подробнее, как процессор выполняет умножение двоичных чисел. Пусть надо умножить число 1101 на 101 (оба числа в двоичной сис­теме счисления). Машина де­лает это следующим образом: она берет число 1101 и, если первый справа элемент второго множи­теля равен 1, то она за­носит его в сумму. Затем сдвигает число 1101 влево на одну позицию, полу­чая тем самым 11010, и, если, второй элемент второго множителя равен еди­нице, то добавляет его к сумме. Если элемент второго множителя равен ну­лю, то сумма не изменяется. Этот процесс сдвигов и сложений повторяется.

Пример выполнения операции деления в двоичной системе счисле­ния:

 

Двоичное деление основано на методе, знакомом вам по десятичному де­ле­нию, т. е. сводится к выполнению операций умножения и вычитания. Вы­пол­нение основной процедуры - выбор числа, кратного делителю и пред­наз­наченного для уменьшения делимого, здесь проще, так как таким числом мо­гут быть только либо 0, либо сам делитель.

В качестве примера разделим 14310 = 100011112 на 1310 = 11012

 

1 0 0 0 1 1 1 1 1 1 0 1

- 1 1 0 1 1 0 1 12 = 1110

1 0 0 1 1

- 1 1 0 1

1 1 0 1

- 1 1 0 1

0

Проверка показывает, что деление выполнено верно (143 / 13 = 11).

 

Умножение или деление двоичного числа на 2 приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд соответственно вправо или влево:

10112 * 102 = 101102.

10112 / 102 = 101.12.

 

Ая система счисления

 

При наладке аппаратных средств ЭВМ или создании новой программы возникает необходимость " заглянуть внутрь" памяти машины, чтобы оценить ее текущее состояние. Но там все заполнено длинными последователь­нос­тя­ми нулей и единиц двоичных чисел. Эти последовательности очень неудобны для восприятия человеком, привыкшим к более короткой записи десятичных чисел. Кроме того, естественные возможности человеческого мышления не позволяют оценить быстро и точно величину числа, представленного, напри­мер, комбинацией из 16 нулей и единиц.

 

Для облегчения восприятия двоичного числа решили разбивать его на группы разрядов, например, по три или четыре разряда. Эта идея оказалась очень удачной, так как последовательность из трех бит имеет 8 комбинаций, а последовательность из 4 бит - 16. Числа 8 и 16 являются степенями двойки, поэтому легко находить соответствие с двоичными числами. Развивая эту идею, пришли к выводу, что группы разрядов можно закодировать, сократив при этом длину последовательности знаков. Для кодировки трех битов требу­ется восемь цифр, поэтому взяли цифры от 0 до 7 десятичной системы. Для кодировки же четырех битов необходимо шестнадцать знаков; для этого взя­ли 10 цифр десятичной системы и 6 букв латинского алфавита: A, B, C, D, E, F. Полученные системы, имеющие основания 8 и 16, назвали соответственно восьмеричной и шестнадцатеричной.

 

В восьмеричной (octal) системе счисления используются восемь раз­лич­ных цифр: 0, 1, 2, 3, 4, 5, 6, 7. Основание системы - 8. При записи отрица­тель­ных чисел перед последовательностью цифр ставят знак минус. Сло­же­ние, вычитание, умножение и деление чисел, представленных в восьмерич­ной системе, выполняются весьма просто, подобно тому, как это делают в общеизвестной десятичной системе счисления.

Пример выполнения операции сложения в восьмеричной системе счис­ления:

1 1 Красным цветом показан перенос из младших разрядов в старшие.

4 7 6 Выполнение операции в каждом разряде:

+ 3 4 1) 6 + 4 = 10 = 1*8 + 2 = 128

5 3 2 2) 1 + 7 + 3 = 1*8 + 3 = 138

3) 1 + 4 = 5

Проверим результат путем перевода чисел в десятичную систему счис­ления:

4768 = 4*82 + 7*8 + 6 = 318 318

348 = 3*8 + 4 = 28 +28

532 = 5*82 + 3*8 + 2 = 346 346

 

Пример выполнения операции вычитания в восьмеричной системе счис­ления:

7 8 Красным цветом показан перенос из старших разрядов в младшие.

5 3 2 Выполнение операции в каждом разряде:

- 3 4 1) 8 + 2 – 4 = 6

4 7 6 2) 7 + 2 - 3 = 1*8 + 3 = 138

3) 1 + 4 = 5

Пример выполнения операции умножения в восьмеричной системе счис­ле­ния:

5 4 54 4*4 = 16 = 2*8 + 0 = 208 (записываем 0)

* 3 4 * 4 2+ 5*4 = 22 = 2*8 + 6 = 268

2 6 0 260

+ 2 0 4

2 3 2 0 54 4*3 = 12 = 1*8 + 4 = 148 (записываем 4)

* 3 1 + 5*3 = 16 = 2*8 + 0 = 208

Выполним проверку:

548 = 5*8 + 4 = 4410 44

348 = 3*8 + 4 = 2810 * 28

23208 = 2*83 + 3*82 + 2*8 = 123210 352

+ 88 = 123210

Пример выполнения операции деления в восьмеричной системе счис­ле­ния:

 

2 3 2 08 5 48

- 2 0 4 3 48

2 6 0

- 2 6 0

Деление в восьмеричной системе близко делению в десятичной системе: нужно подобрать цифры частного. 232 делим на 54, в десятичной системе мы получили бы целое частное 4, но из предидущего примера мы знаем, что в восьмеричной системе 54*4 = 260, это много, попробуем взять цифру поменьше – 3, умножаем 54*3 = 204, эта цифра подходит, и т.д.

 

В различных языках про­грам­мирования запись восьмеричных чисел начинается с 0, например, запись 011 означает десятичное число 9.

Ая система счисления

 

В шестнадцатеричной (hexadecimal) системе счисления применяются десять цифр от 0 до 9 и шесть первых букв латинского алфавита:

10 – A 11 – B 12 – C 13 – D 14 – E 15 – F.

При запи­си отрицательных чисел слева от последовательности цифр ставят знак ми­нус.

Для того чтобы при написании компьютерных программ отличить чис­ла, записанные в шестнадцатеричной системе, от других, перед числом ста­вят 0x. То есть 0x11 и 11 - это разные числа.

Шестнадцатеричная система счисления широко используется при зада­нии различных оттенков цвета при кодировании графической информации (модель RGB). Так, в редакторе гипертекста Netscape Composer можно зада­вать цвета для фона или текста как в десятичной, так и шестнадцатеричной системах счисления (см. рисунок).

 

 

Пример выполнения операции сложения в 16-ой системе счис­ления:

1 1 Красным цветом показан перенос из младших разрядов

A 7 B16 Выполнение операции в каждом разряде:

+ C 816 B + 8 = 11 + 8 = 19 = 1*16 + 3 = 1316 (записываем 3)

B 4 316 1+7+С = 8+12 = 20 = 1*16 + 4 = 1416 (записываем 4)

1 + A = B

Проверим резульат путем перевода чисел в 10-ю систему:

A7B16 = 10*162 + 7*16 +11 = 2683

2 1 0 2683

C816 = 12*16 + 8 = 200 + 200

1 0 2883

B4316 = 11*162 + 4*16 +3 = 2883

2 1 0

 

Пример выполнения операции вычитания в 16-ой системе счис­ления:

 

15 16 Красным цветом показан заем из старших разрядов

B 4 316 Выполнение операции в каждом разряде:

- A 7 B16 16 + 3 – B = 19 -11 = 8

C 816 15 + 4 – 7 = 12 = C

B - 1 – A = 0

 

Умножение и деление в 16-ой системе обычно не выполняется ввиду сложности вычислений.

Перевод чисел из одной системы счисления в другую

Перевод числа из системы счисления с основанием q в 10-ю систему счисле­ния выполняется путем вычисления значения многочлена по степеням q, коэффи­ци­ен­ты которого равны цифрам числа.

Рассмотрим различные способы перевода чисел из одной системы счис­ления в другую на конкретных примерах.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 1163; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.222 с.)
Главная | Случайная страница | Обратная связь