Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Полимерные материалы и изделия



Полимерныминазывают материалы, в состав которых в качестве основного компонента входят высокомолекулярные органические вяжущие вещества (полимеры).

Благодаря способности в процессе переработки принимать требуемую форму и сохранять ее после снятия действующих усилий полимерные материалы называют также пластическими массами (пластмассами или пластиками). Пластмассы, применяемые в строительстве, представляют собой сложные композиции, состоящие из полимерного связующего, наполнителей, стабилизаторов, пластификаторов, отвердителей и других компонентов.

Полимеры (от греческого «поли» – много, «мерос» – часть, доля)– это высокомолекулярные вещества, молекулы которых состоят из большого количества звеньев одинаковой структуры, взаимодействующих друг с другом посредством ковалентных связей с образованием макромолекул.

По составу основной цепи макромолекул полимеры разделяют на три группы: а) карбоцепные полимеры – макромолекулярные цепи полимера состоят лишь из атомов углерода; б) гетероцепные полимеры, в состав цепей которых входят кроме атомов углерода еще атомы кислорода или серы, азота, фосфора и т.п.; в) элементоорганические полимеры, в основные цепи которых могут входить атомы кремния, алюминия, титана и других элементов, имеющие кремнийкислородные, силоксановые связи.

Полимеры могут иметь линейное, разветвленное или сетчатое (трехмерное) строение, что определяет физико-механические и химические свойства полимеров. Макромолекулы полимеров линейного строения вытянуты в виде цепей, связанных между собой слабыми силами межмолекулярного взаимодействия (рис.9а). Для разветвленных полимеров характерно наличие мономерных звеньев, ответвленных от основной цепи макромолекулы (рис.9б). Сетчатые (трехмерные) структуры полимеров характеризуются тем, что прочные химические связи между цепями («сшивка» отдельных линейных или разветвленных цепей полимера) приводят к образованию единого пространственного каркаса (рис.9в).

Полимеры с макромолекулами линейного или разветвленного строения плавятся при нагревании с изменением свойств и растворяются в соответствующем органическом растворителе, а при охлаждении вновь затвердевают. Такие полимеры, способные многократно размягчаться при нагревании и затвердевать при охлаждении, называются термопластичными (термопласты). Напротив, полимеры с макромолекулами трехмерного строения имеют повышенную устойчивость к термическим и механическим воздействиям, не растворяются в растворителях, а лишь набухают. Такие полимеры не могут обратимо размягчаться при повторном нагревании и носят название термореактивных полимеров (реактопласты).

Высокомолекуляр­ные соединения характеризуются не только структурой молекул, но и моле­кулярной массой. Полимеры обычно имеют молекулярную массу свыше 5000 единиц; высокомолекуляр­ные соединения с меньшей молекулярной массой называют олигомерами. По мере увеличения молекулярной массы полимера растворимость его в органических раствори­телях снижается, несколько снижается эластичность, однако прочность зна­чительно возрастает.

Свойства многих полимеров неразрывно связаны с величиной молеку­лярной массы и межмолекулярных сил, которые слабее обычных валентных связей. При увеличении молекулярной массы полимера суммарный эффект межмолекулярных сил становится ощутимым, поскольку их источником яв­ляется каждый атом. В этой связи возрастающая роль межмолекулярных сил при повышении молекулярной массы качественно отличает полимеры от низкомолекулярных соединений.

а
в
б


 

Рис. 9. Схематическое строение макромолекул полимеров с линейной (а), разветвленной (б), сетчатой (в) структурой

Для производства полимеров основным сырьем служат мономеры, т.е. вещества, способные соединяться друг с другом, образуя полимеры. Моно­меры получают путем переработки природных и нефтяных газов, каменного угля, аммиака, углекислоты и других подобных веществ. В зависимости от метода получения полимеры подразделяются на полимеризационные, поликонденсационные и модифицированные природные.

Полимеризационные полимеры получают в процессе полимеризации мономеров вследствие раскрытия кратных связей (или раскрытия цикла) и соединения элементарных звеньев мономера в длинные цепи. Поскольку при реакции полимеризации атомы и их группировки не отщепляются, побочные продукты не образуются, химический состав мономера и полимера одинаков.

Поликонденсационные полимеры получают в процессе реакции поликонденсации двух или нескольких низкомолекулярных веществ. При этой реакции наряду с основным продуктом поликонденсации образуются побочные соединения (вода, спирты и другие), а химический состав полимера отлича­ется от химического состава исходных продуктов поликонденсации.

Модифицированные полимеры получают из природных высокомолеку­лярных веществ (целлюлоза, казеин) путем их химической модифи­кации для изменения их первоначальных свойств в заданном направлении. Из ацетилцеллюлозы вырабатывают прочные и водостойкие лаки для окрашивания древесины и металла.

К полимеризационным полимерам (термопластам) относятся полиэтилен, полипропилен, полиизобутилен, поливинилхлорид, полистирол, полиметилметакрилат (органическое стекло), поливинилацетат и др. Полиэтилен[-СН2-СН2-]п – продукт полимеризации этилена. Выпускается в виде гранул размером 3 – 4 мм или белого порошка. Технические свойства полиэтилена зависят от молекулярной мас­сы, разветвленности цепи и степени кристалличности. Полиэтилен один из самых легких полимеров – его плотность меньше плотности воды (0, 92-0, 97 г/см3). Характеризуется высоким пределом прочности при растяжении (12-32 МПа), незначительным водопоглощением (0, 03-0, 04 %), высокой химической стойкостью и морозостойкостью. Сле­дует учитывать особенности полиэтилена, свойственные всем полимерам с линей­ной структурой: сравнительно низкий модуль упругости (150-800 МПа), малую твердость, ограниченную теплостойкость (108-130 °С), большой коэффициент теплового расширения. Полиэтилен применяется для производства труб, пленок, теплоизоляционных газонаполненных материалов, тары и сантехнического оборудования.

Поливинилхлорид (ПВХ) является продуктом полимеризации винилхлорида (СH2=CHCl). Высокие механические свойства поливинилхлорида определили главные области его применения в строительстве. Из поливинилхлорида изготовляют гидро­изоляционные и отделочные материалы, плинтуса, поручни, оконные и дверные переплеты, линолеум и др. Ценным свой­ством поливинилхлорида является стойкость к действию кислот, ще­лочей, спирта, бензина, смазочных масел. Поэтому его широко при­меняют для производства труб, используемых в системах водоснаб­жения, канализации и технологических трубопроводов.

Недостатками поливинилхлорида является резкое понижение прочности при повышении температуры, а также ползучесть при дли­тельном действии нагрузки.

Полистирол [-СН2-СНС6Н5-]п – твердый продукт полимеризации стирола (винилбензола). При обычной температуре полистирол представляет собой твердый прозрачный материал, похожий на стек­ло, пропускающий до 90 % видимой части спектра. Выпускают поли­стирол в виде гранул (6-10 мм), мелкого и крупнозернистого порошка, а также в виде бисера (при суспензионном методе производства) с влажностью до 0, 2 %.

Полистирол обладает высокими механическими свойствами (предел прочности на сжатие 80-110 МПа), водостоек, хорошо сопротивляется действию концентрированных кислот (кроме азотной и ледяной ук­сусной кислот), противостоит растворам щелочей (с концентрацией до 40 %). К недостаткам полистирола, ограничивающим его применение, относятся: невысо­кая теплостойкость, хрупкость, проявляющаяся при ударной нагруз­ке.

Применяют для изготовления гидроизоляционных пленок, облицовочных плиток, теплоизоляционных материалов, водопроводных труб и др.

Среди поликонденсационных полимеров (реактопластов) наиболее значимыми являются фенолформальдегидные, карбамидные (мочевиноформальдегидные), эпоксидные, кремнийорганические полимеры, полиуретаны и др. Фенолформальдегидные полимеры получают путем поликонденсации фенола с формальдегидом. Эти полимеры хорошо совмещаются с на­полнителями - древесной стружкой, бумагой, тканью, стеклянным волокном, при этом получаются пластики более прочные и менее хрупкие, чем сами полимеры. Поэтому фенолформальдегидные по­лимеры широко применяют в качестве связующего при изготовлении древесностружечных плит, бумажнослоистых пластиков, стеклопла­стиков и разнообразных изделий из минеральной ваты. Кроме того, они используются для производства клеев, водостойкой фанеры, спиртовых лаков.

Макромолекулы кремнийорганических полимеров состоят из чередующихся атомов кремния и кислорода, а углерод входит лишь в состав групп, обрамляющих главную цепь СН3. Наличие силоксановой связи придает свойства, присущие силикатным материалам (прочность, твердость, теплостойкость), а углеводородистых радикалов СН3 – органическим поли­мерам (эластичность и др.).

Полимеры характеризуются следующими техническими свойствами: термическими (температурой размягчения и теплостойкостью, температурой стеклования и те­кучестью), механическими (прочностью, деформативностью и поверх­ностной твердостью), химическими (атмосферостойкостью и сопротивляемостью деструкции).

В целом, наряду с положительными свойствами полимеров – малой средней плотностью (около 1 г/см3), низкой теплопроводностью, водо- и газонепроницаемостью, химической стойкостью, высоким коэффициентом конструктивного качества, практически неограниченной сырьевой базой и др. – они обладают и рядом недостатков. К ним относятся: низкая теплостойкость, невысокий модуль упругости, значительная ползучесть, склонность к старению, что в итоге определяет недостаточную долговечность. Кроме того, необходимо учитывать горючесть и определенную токсичностьполимеров. Так, при получении многих полимерных материалов используются в качестве связующего фенолформальдегидные смолы, содержащие до 9 % свободного фенола, до 11 % свободного формальдегида и 1, 5-2, 0 % метанола. В процессе производства и эксплуатации изделий значительная часть этих высокотоксичных веществ выделяется в воздух. Пенополистирол при обычных условиях эксплуатации (и особенно при горении) выделяет высокотоксичный стирол. Пенополиуретановые теплоизоляционные материалы при горении образуют множество летучих высокотоксичных соединений, включая синильную кислоту.

Наполнители в пластических массах, снижая расход полимера, удешевляют пластмассы. Кроме того, структурируя полимерное связующее, они улучшают ряд технических свойств пластмасс: прочность, твердость, термостойкость, сопротивляемость усадке и ползучести и др.

Наполнители в зависимости от химической природы разделяют на органические и неорганические; в зависимости от формы и структуры – порошкообразные и волокнистые. В производстве полимерных композиционных материалов широко применяются органические и неорганические порошкообразныенаполнители (древесная мука, отход целлюлозного производства – лигнин, микрослюда, кварцевая мука, тальк и т.д.).

Волокнистыми наполнителямислужат целлюлозное, асбестовое и стеклянное, а также синтетические (из капрона, нейлона, лавсана и др.) волокна.

Добавочные вещества. Введение пластификаторов(эфиры алифатических и ароматических кислот и алифатических спиртов, эфиры гликолей и эфиры фосфорной кислоты, эпоксидированные и хлорированные соединения) позволяет улучшить условия переработки полимерных композиций, снизить их хрупкость. Добавки-стабилизаторы (антиоксиданты, термо- и светостабилизаторы) способствуют длительному сохранению свойств пластмасс в процессе их эксплуатации.Отвердители(сшивающие и вулканизующие агенты) обеспечивают процесс отверждения полимеров(формирование их пространственной структуры). Для получения окрашенных пластмасс используют пигменты. Стойкость пластмасс против возгорания повышают антипирены. Создание газонаполненных (ячеистых) пластмасс достигается с помощью порообразователей.

Все многообразие пластмасс в зависимости от назначения их в строительстве сводится к группам: конструкционным, кровельным, гидроизоляционным и герметизирующим; тепло- и звукоизоляционным; отделочным (покрытия полов и стен, лаки, краски, клеи и т.п.) материалам, а также материалам для инженерных коммуникаций. Основными конструкционнымиматериалами на основе полимеров являются полимербетоны. К конструкционно-отделочным материалам относятся стеклопластики, бумажно-слоистые, угольные и другие пластики; древесноволокнистые и древесностружечные плиты (которые могут являться также конструкционно-теплоизоляционными материалами).

Полимербетоны – композиционные материалы, изготовляемые преимущественно на основе термореактивных полимеров: поли­эфирных, эпоксидных, фенолоформальдегидных, фурановых и др. Заполнители выбираются в зависимости от вида агрессивной среды эксплуатации. Для кислых сред получают полимербетоны на кислотостойких за­полнителях – кварцевом песке и щебне из кварцита, базальта или гра­нита. Используют также бой кислотоупорного кирпича, кокс, антра­цит, графит. Наиболее высокие физико-механические свойства полимербетоны имеют на эпоксидных смолах. Для уменьшения расхода и стоимости эпоксидных смол их модифицируют каменноугольной смолой (до 35-50 %). Широкое распространение получили полимербетоны на фурановых полимерах, которые модифицируют эпоксидны­ми смолами для улучшения свойств композиций.

Расход связующего составляет 100-200 кг на 1 м3 полимербетона при соотношении полимера к наполнителю 1: 5-1: 12 по массе. Технология при­готовления и уплотнения полимербетонов такая же, как и цементных. Термообработка при 40-80 °С значительно ускоряет процесс тверде­ния. Полимербетоны (полимеррастворы) хорошо склеиваются с це­ментным бетоном, поэтому их применяют для ремонта железобетон­ных конструкций. Для уменьшения хрупкости полимербетона применяют волок­нистые наполнители – асбест, стекловолокно и др.Полимербетоны отличаются от обычного цементного бетона не только химической стойкостью (особенно по отношению к кислотам), но и высокими показателями прочности, в особенности при растяжении (7-20 МПа) и изгибе (16-40 МПа). Прочность при сжатии достигает 60-120 МПа. Морозостойкость полимербетонов может иметь 200-300 и более циклов за­мораживания и оттаивания; теплостойкость 100-200 °С (до 300 °С). Но их стои­мость в несколько раз выше цементных бетонов.

Применяют полимербетоны для химически стойких конструкций, износостойких покрытий, там, где высокая стоимость полимербето­нов будет оправдана. Отрицательными свойствами полимербетонов яв­ляются их большая ползучесть и старение, усиливающееся при действии попеременного нагревания и охлаждения. Не­обходимо соблюдение специальных правил охраны труда при работе с полимерами и кислыми отвердителями, могущими вызвать ожоги. В частности необходимы хорошая вентиляция, обеспечение рабочих защитными очками, резиновыми рукавицами, спецодеждой.

Стеклопластики – это композиционные листовые материалы, из­готовляемые из стеклянных волокон или тканей, связанных по­лимером. Связующим веществом в стеклопластиках обычно служат феноло-формальдегидные, полиэфирные и эпоксидные полимеры. Выпускают три разновидности стеклопластиков: на основе ориен­тированных волокон, рубленых волокон и тканей или матов. Стеклопластики с ориентированными волокнами (типа СВАМ – стекловолокнистого анизотропного материала) обладают большой прочностью (при растяжении до 1000 МПа), легкостью (их плотность 1, 8-2 г/см3), что в сочетании с химической стойкостью делает их эф­фективным материалом для строительных конструкций, емкостей и труб. Стеклопластики с рубленым стеклянным волокном изготовляют в виде волокнистых или плоских листов на полиэфирном связующем, обладающим светопрозрачностью. Эти изделия применяют для уст­ройства кровель, ограждений балконов, лоджий и перегородок.Стеклопластики, изготовляемые на основе стеклянной ткани (стеклотекстолиты), получают горячим прессованием полотнищ ткани, пропитанной термореактивным полимером, при высоком дав­лении и температуре. Стеклотекстолит идет для наружных слоев трехслойных стеновых панелей. Этот же материал применяют для ус­тройства оболочек и других строительных конструкций.Стеклотекстолиты получают также прессованием пастообразной массы из полиэфирного полимера, стекловолокна, асбеста и порош­кообразного наполнителя. Из этого материала формуют оконные и дверные блоки, фурнитуру, санитарно-технические изделия.

Бумажно-слоистые пластики изготовляют из нескольких слоев специальной бумаги, пропитанных фенолоформальдегидным иликарбамидным полимером. Пластик выпускают в виде листов длиной 1000-3000 мм, шириной 600-1600 мм, толщиной 1-5 мм. Бумажно-слоистые пластики разнообразны по цвету и рисунку, хорошо обраба­тываются – их можно пилить, сверлить. Пластик тол­щиной до 1, 6 мм крепят битумно-каучуковыми и другими мастиками, эпоксидными и резорциноформальдегидными клеями. Более толстые листы пластика крепят механическим способом.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 673; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь