Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Металлические материалы и изделия



Металлические материалы и изделия

Общие сведения

 

Металлы – это вещества, обладающие высокой прочностью, пластичностью, тепло- и электропроводностью, характерным блеском.

Выплавка металлов возникла в глубокой древности. Получение меди датируется 7–6 тыс. до н. э. Во 2 тыс. до н. э. начали применяться изделия из бронзы. В середине 2-го тыс. до н. э. человек начал получать железо. В древнем мире добывали и применяли также золото, серебро, олово, свинец, ртуть.

Широкое применение стали началось с ХIХ века с изобретением бессемеровского, мартеновского и томасовского процессов производства литой стали. С начала ХХ в. начала выпускаться легированная сталь в электропечах. Свойства наиболее важных металлов, применяемых в технике и строительстве, приведены в таблице 18.1

Таблица 18.1 – Основные физико-механические свойства чистых металлов  
Металл Плот­ность, г/см3 Теплоем­кость при 20 °С, Дж/кг.°С Темпера­тура плав­ления, °С Твер­дость, Н/мм2 Предел проч­ности, МПа Относи­тельное удлине­ние, % Удельное электро­сопротив­ление, Ом× м  
Алюминий (А1) 2, 7 0, 88 0, 026  
Ванадий (W) 19, 1 0, 13 0, 050  
Железо (Fe) 7, 86 0, 45 0, 106  
Магний (Mg) 1, 74 1, 01 0, 045  
Медь (Си) 8, 93 0, 38 0, 017  
Никель (Ni) 8, 8 0, 43 0, 072  
Олово (Sn) 7, 3 0, 23 0, 015  
Свинец (РЬ) 11, 34 0, 12 0, 188  
Цинк (Zn) 7, 4 0, 39 0, 057  

Более высокие свойства имеют сплавы, состоящие из двух и более хи­мических элементов. Они чаще всего и применяются в технике и строительстве. Сплавы могут находиться между собой в одном из трех видов связи: химической, твердых растворов и механической смеси.

Металлы подразделяются на две группы: черные и цветные. К черным относят металлы и сплавы, в которых основным компонентом является же­лезо. К цветным относят металлы и сплавы, в которых основным компонен­том является не железо, а другие элементы: алюминий, медь, цинк, магний и пр.

В строительстве чаще всего применяются черные металлы: чугун и сталь. Чугун – это железоуглеродистый сплав с содержанием углерода бо­лее 2, 14 %. Сталь – это железоуглеродистый сплав с содержанием углерода не более 2, 14 %.

При наличии углерода до 0, 25 % сталь называется низкоуглеродистой, при содержании его от 0, 25 до 0, 6 % – среднеуглеродистой и при содержа­нии углерода более 0, 6 % – высокоуглеродистой. С повышением содержа­ния углерода уменьшается пластичность стали, повышается хрупкость.

В строительстве для конструкций, подвергающихся динамическим на­грузкам, чаще всего применяют низкоуглеродистые стали. Из них строят мосты, фермы, резервуары, трубопроводы.

Для улучшения свойств чугунов и сталей в их состав вводят легирую­щие добавки: марганец, хром, никель, молибден, алюминий, медь и др. При содержании легирующих добавок до 2, 5 % стали называют низколегиро­ванными, при 2, 5–10 % – среднелегированными и более 10 % – высоколе­гированными. Легирующие вещества повышают коррозионную стойкость, ковкость, упругость черных металлов.

В строительстве применяются в основном низколегированные стали.

Цветные металлы разделяют на легкие и тяжелые. Легкие имеют плот­ность менее 3, 5 г/см3. Основными компонентами легких металлов являются алюминий и магний. Например, дуралюминий представляет собой сплав алюминия с медью, магнием, кремнием и марганцем. В тяжелых металлах основным компонентом является медь, олово, цинк, свинец. В строительст­ве часто применяется бронза (сплав меди с оловом) и латунь (сплав меди с цинком).

 

АТОМНО-КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ МЕТАЛЛОВ

Получение стали

 

Сталь отличается от чугуна меньшим содержанием углерода (до 2, 14 %) и других примесей. Она имеет более высокую пластичность, лучше обраба­тывается. Получение стали из чугуна заключается в уменьшении примесей до допускаемого количества. Основными примесями в стали являются сера, фосфор, марганец, кремний.

В обычной стали содержание серы допускается до 0, 04–0, 06 %. Это вредная примесь. При повышенном ее содержании сталь становится крас­ноломкой.

Содержание фосфора в стали составляет 0, 04–0, 085 %. Это также вред­ная примесь, которая увеличивает хрупкость стали, особенно при низких температурах.

Содержание марганца в стали обычно составляет 0, 3–0, 8 %. Он вводится как раскислитель, повышает прокаливаемость стали и ослабляет вредное действие серы.


Содержание кремния в обычной стали не превышает 0, 3–0, 4 %. Он явля- ется раскислителем, повышает плотность слитка.

Основными способами производства стали являются конверторный мартеновский и электроплавка.

Конверторный способ получения стали заключается в продувке воздухе или кислорода через расплавленный чугун. Процесс осуществляется в специальных печах – конверторах. Различают кислый (бессемеровский), основной (томасовский) и кислородно-конверторный способы. Первые два имеют ограниченное применение из-за низкого качества стали. Основным способом является кислородно-конверторный, при котором окисление чугуна осуществляется технически чистым кислородом. Схема кислородного конвертора приведена на рисунке 18.11.

Материалами для получения стали слу­жат расплавленный чугун, лом, окисли­тели.

Перед загрузкой конвертор нак-лоняют, загружают лом, затем заливают чугун. Да­лее конвертор ставят в вер-тикальное поло­жение, опускают фурму и начинают про­дувать кислород. Одно-временно загружа­ют известь, железную руду и флюсы (бок­сит, плавиковый шпат).

В начале процесса кислород окисляет железо, образуя оксид железа, который начинает реагировать с кремнием, марган­цем, фосфором и углеродом:

 

2Fe + О2 = 2FeО + Q;

2FeO + Si = 2Fe + SiO2 + Qi;

FeO + Mn = Fe + MnO + Q2;

5FeO + 2P = 5Fe + P2O5 + Q3;

FeO + С = Fe + CO - Q.

После окисления углерода снова начинает окисляться железо. В металле содержится незначительное количество углерода и много оксида железа. Такой металл красноломкий, непригоден по механическим свойствам. По­этому после прекращения дутья в конвертор вводят раскислители: марга­нец, кремний в виде ферросплавов и алюминий в чистом виде.

SiO2 и МпО уходят в шлак, а СО частично сгорает и удаляется с пламе­нем.

После окончания продувки конвертор поворачивают в горизонтальное положение, и сталь выпускают в ковш.


По степени раскисленности стали разделяют на кипящие, полуспокой­ные и спокойные. Кипящие стали раскисляют ферромарганцем. В них час­тично остается растворенный FeO и при кристаллизации продолжается про­цесс кипения по реакции

 

FeO + С = Fe + СО.

 

Сталь содержит в своем составе пузыри. Ее стоимость самая низкая.

Спокойную сталь раскисляют ферромарганцем, ферросилицием и алю­минием. В металле нет FeO. Кипение прекращается, сталь «ускоряется». Это наиболее дорогая сталь.

Полуспокойную сталь раскисляют ферромарганцем и в меньшем коли­честве ферросилицием. Она занимает среднее положение между кипящей и спокойной.

После раскисления сталь разливают в изложницы для получения сталь­ных слитков.

Мартеновский способ выплавки стали осуществляется на поду марте­новской печи (рисунок 18.12).

Рисунок 18.12 – Схема мартеновской печи: 1 – газовые регенераторы; 2 – воздушные реге­нераторы; 3, 4 – воздушные и газовые вертикальные каналы; 5 – головки; 6 – рабочее пространство печи; 7 – подина печи; 8 – свод; 9 – рабочие окна; 10 – насадка регенератора; 11 – борова


Мартеновская печь является пламенной печью, в рабочем пространстве которой сжигается газообразное или жидкое топливо. Высокая температура создается за счет регенерации тепла отходящих газов. Сырьем служат стальной лом, флюсы и чугун, которые последовательно загружают в печь. Образующийся FeO вступает во взаимодействие с вредными примесями и переводит их в шлак. Шлак всплывает и находится на поверхности стали. Окисляясь, FeO переходит в железо.

Мартеновским способом получают высококачественные стали необхо­димого состава. Их применяют для изготовления мостов, ферм, рельсов.

Электроплавка осуществляется в дуговых и индукционных печах. Наи­более распространены электродуговые печи вместимостью от 0, 5 до 360 т (рисунок 18.13). Тепло образуется электрической дугой, возбуждаемой графи­товыми электродами и металлической шихтой.

Рисунок 18.13 – Схема дуговой электропечи: 1 – понижающий трансформатор; 2 – токоподводящие кабели; 3 – гидравлический привод для наклона печи;

4, 5 – опора сектора и сектор для наклона печи; 6 – подина печи;

7 – желоб для выпуска металла; 8 – свод печи; 9 – электроды;

10 – механизм для подъема и опускания электродов

В электропечах получают стали заданного химического состава. Это вы­сококачественные конструкционные, инструментальные, коррозионностойкие, жаростойкие и другие специальные стали. Однако стоимость их выше конверторной и мартеновской. Выплавленную сталь выпускают в ковш, представляющий металлический сосуд (рисунок 18.14), выложенный изнутри огнеупорным материалом, из которого затем разливают в металлические формы (изложницы), где она затвердевает и образует слитки массой от 10 кг до 300 т. Крупные слитки разливают сверху (рисунок 18.15), мелкие –сифоном снизу (рисунок 18.16).


Рисунок 18.14 – Сталеразливочный ковш: 1 – кожух; 2 – футеровка ковша; 3 – стопор; 4 –огнеупорная пробка; 5 – стакан с отверстием для выпуска стали; 6 – рычажный механизм стопора

 

 

Рисунок 18.16 – Схема разливки стали сифоном: 1– ковш; 2 – футерованная центровая проводка; 3 – футерованная прибыльная надставка; 4 – изложница; 5 – башмак; 6 – каналы сифонных проводок; 7 – поддон  
Рисунок 18.15 – Схема разливки стали сверху: 1– ковш; 2 – промежуточная воронка; 3 – футерованная прибыльная надставка; 4 – изложница  

 

 

При затвердевании объем стали уменьшается на 3 %. Образуются рако­вины и усадочная пористость. В спокойной стали все пустоты из слитка должны быть выведены в его прибыльную часть, составляющую 12–20 %, которая затем отрезается и идет в переплав.

Наиболее прогрессивным является непрерывный способ разливки стали (рисунок 18.17). Сталь поступает в кристаллизатор, где затвердевает в виде одного непрерывного слитка необходимого профиля и неограниченной длины. Затем его разрезают на мерные длины и используют при производ­стве листа и сортового проката.

 

Рисунок 18.17 – Схема непрерывной разливки стали: 1 – сталеразливочный

ковш; 2 – промежуточный ковш; 3 – водоохлаждаемый кристаллизатор; 4 – зона

вторичного охлаждения; 5 - тянущие валки; 6 — ацетилено-кислородный резак

 

Непрерывное литье сокращает отходы, повышает производительность труда, улучшает качество металла.

 

18.4.3 Получение меди

 

Сырьем для выплавки меди служат сульфидные руды – медный колче­дан или халькопирит Cu2S и другие с содержанием меди 1–2 %. Медь полу­чают чаще всего пирометаллургическим способом, который включает обо­гащение руд для получения концентрата, его обжига, плавку на медный штейн, получение черновой меди и ее рафинирование. Обогащение осуще­ствляют флотацией, после чего медный концентрат содержит до 30 % меди. Затем его обжигают для частичного удаления серы (до 50 %) и получают огарок. Плавка на штейн производится в пламенных отражательных или


электропечах при температуре до 1600 °С, затем штейн заливают в конвер­тор (рисунок 18.18) и перерабатывают в черновую медь. Для шлакования ок­сидов железа на поверхность штейна загружают кварцевый песок. Затем производят продувку воздухом в два периода.

 

Рисунок 18.18 –Медеплавильный конвертор: 1 – фурмы воздушного дутья;

2 – футеровочный корпус; 3 – зубчатая передача; 4 – обод;

5 – горловина для заливки штейна; 6 – отверстие для загрузки флюса;

7 – воздухопровод; 8–опорные ролики; 9 – электродвигатель с редуктором

 

В первый период сульфиды железа окисляются кислородом воздуха. FeO, взаимодействуя с SiO2, переходит в шлак, a SO2 направляется на изго­товление серной кислоты:

 

2FeS + ЗО2 = 2FeO + 2SO2 + Q;

2FeO + SiO2 = SiO2 ∙ 2FeO + Q.

 

Шлак направляют на повторную переработку для извлечения меди. Ос­тавшийся штейн белого цвета продувают вторично воздухом и получают черновую медь:

 

2Cu2S + ЗО2 = 2Cu2O + 2SO2;

Cu2S + 2Cu2O = 6Cu + SO2.

 

Она содержит в своем составе до 2 % железа, серы, цинка, никеля, свин­ца, алюминия и других примесей. Ее рафинируют огневым и электролити­ческим способами. Огневое рафинирование черновой меди осуществляется в пламенных 400-тонных печах, где ее расплавляют и продувают воздухом. В результате чего образуется 4Сu + О2 = 2Сu2О, который окисляет примеси Al, Si, Mn, Zn, Fe, Ni и др. Не окисляются только золото и серебро. После скачивания шлака медь раскисляют, перемешивая природным газом. Это происходит по реакции

 

4Сu2О + СН4 = 8Сu + СО2 + 2Н2О.


Расплав с содержанием 99, 5–99, 7 % меди разливают в слитки или анод­ные пластины для электролитического рафинирования.

Электролиз осуществляют в ваннах. Электролитом является 15%-ный раствор медного купороса (CuSO4 · 5Н2О) и серной кислоты (H2SO4). В электролит погружают анодные пластины из черновой меди и катоды, изго­товленные из чистой электролитической меди. Их подвешивают на анодной и катодной шинах и включают постоянный ток. Металл анодов растворяет­ся и переходит в раствор, а на катодах выделяется металлическая медь чис­тотой 99, 98 %. Ее переплавляют в слитки, из которых получают лист, про­волоку, трубы, используют для выплавки латуней и бронз.

 

Получение алюминия

 

Алюминий производят из руд, богатых глиноземом. Чаще всего исполь­зуют бокситы. Состав их следующий, %: AI2O3 – 40–60, Fe2О3 – 15–30, SiO2– 5–15, TiO2 – 2–4 и гидратная вода – 10–15. Процесс получения алю­миния включает три этапа: извлечение глинозема из руды, электролиз рас­плавленного глинозема и получение первичного алюминия, его рафиниро­вание.

Глинозем извлекают мокрым или сухим способами. При мокром – бок­ситы дробят, измельчают в шаровых мельницах, а затем выдерживают в автоклавах 2–3 часа с концентрированной щелочью при температуре 150–250 °С и давлении до 3 МПа. Происходит взаимодействие между гли­ноземом и щелочью:

 

А12О3 + ЗН2О + 2NaOH = Na2O × А12О3 + 4 Н2О.

 

Раствор алюмината натрия в виде пульпы, после фильтрации и разбав­ления водой, выдерживается в отстойнике, в котором выпадает в осадок гидроксид алюминия,

 

Na2O ∙ А12О3 + 4 Н2О = 2NaOH + 2А1(ОН)3¯,

 

который фильтруют, прокаливают при температуре 1200-1300 °С во вра­щающихся печах и получают глинозем:

 

2А1(ОН)3 = А12О3 + 3Н2О.

 

При сухом способе смесь боксита, соды и известняка спекают во вра­щающихся печах при температуре 1200 °С. Образуется спек с водораство­римым алюминатом натрия

 

А12О3 + Na2 CO3 = Na2O · А12О3 + СО2


и нерастворимый в воде силикат кальция CaO · SiO2, в образовании которо­го участвует известь.

Алюминат натрия извлекают из спека горячей водой и продувают газо­образным СО2:

 

Na2O ∙ А12О3 + 3Н2О + СО2 = 2А1(ОН)3 + Na2 CO3.

 

Осадок промывают, прокаливают и затем получают глинозем, как при мокром способе.

Глинозем растворяют в расплавленном криолите Na3AlF6, из которого электролизом получают алюминий. Процесс осуществляется в алюминие­вой ванне-электролизере (рисунок18.19). Внутренняя поверхность ванны облицована угольными блоками, которые являются катодом. Анодами слу­жат угольные электроды, погруженные в расплав.

Рисунок 18.19 – Схема электролизера для производства алюминия:

1 – катодные угольные блоки; 2 – огнеупорная футеровка; 3 – стальной кожух;

4 – угольные плиты; 5 – жидкий алюминий; 6 – металлические стержни с шинами;

7 – угольный анод; 8 – глинозем; 9 – жидкий электролит; 10 – корка затвердевшего

электролита; 11 – катодная токоподводящая шина; 12 – фундамент

 

При температуре 930–950 °С глинозем электролита диссоциирует на ионы:

 

А12О3 ® 2 А13+ + 3О2-

 

На поверхности угольной подины, которая служит катодом, ионы вос­станавливаются до металла:

 

2А13+ + 6е = 2А1.


По мере накопления жидкий алюминий периодически удаляется.

Очистка алюминия от примесей А12Оз, Fe, Si, С, Н2 и др. осуществляется чаще всего электролитическим рафинированием, где электролитом являют­ся безводные хлористые и фтористые соли. Получают алюминий чистотой 99, 996 %.

 

Получение магния

 

Магний получают из магнезита MgCО3, доломита MgCО3 · СаСО3, кар­наллита MgCl2 ∙ КС1 · 6Н2О двумя способами – электролитическим и тер­мическим. Наиболее распространенным является электролитический. Ис­ходным сырьем в этом случае служит обезвоженный хлорид магния или обезвоженный карналлит. Хлорид магния получают обжигом магнезита и хлорированием оксида магния:

 

MgCO3 = MgO + СО2;

MgO + Cl2 + С = MgCl2 + CO.

 

Электролиз расплавленного хлорида магния MgCl2 осуществляют в электролизерах. Аноды изготавливают из графита, катоды – из стали. После электролиза для удаления примесей его подвергают рафинированию.

Магний применяют для раскисления и обессеривания некоторых метал­лов и сплавов, для производства сверхлегких сплавов.

 

18.5 ПРОИЗВОДСТВО МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ

 

Металлические изделия изготавливают методами литья, давлением, с применением сварки и пайки. Для улучшения свойств металл подвергают термической обработке.

 

Получение изделий литьем

 

Литьем называется способ получения заготовки или изделий (отливок) за­полнением форм заданной конфигурации жидким металлом. Отливки изготав­ливают литьем в обычные песчаные формы и специальными способами.

Литейные формы изготавливают из формовочных и стержневых смесей, состоящих из кварцевого песка, являющегося огнеупорной основой, и свя­зующих: глины, жидкого стекла, полимеров. В литейные формы из вагра-нок, электропечей или раздаточных ковшей заливают расплав.

Специальными способами литья получают изделия высокой точности с лучшим качеством поверхности. Это литье в кокиль, когда литейная форма изготавливается из металла (чугун, алюминиевые и другие сплавы), литье под давлением, литье в керамические формы.

Для строительства отливают из чугуна тюбинги. трубы, опорные части колонн, архитектурно-художественные детали.

Термическая обработка стали

 

При нагреве и последующем охлаждении стали по определенному ре­жиму изменяется ее структура и свойства. Стальные изделия приобретают определенные свойства, необходимые при последующей эксплуатации, -высокую твердость, меньшую хрупкость и т. п.

Различают следующие виды термической обработки стали: закалку, от­пуск, отжиг и нормализацию.

Закалка. При закалке готовые стальные изделия нагревают до темпера­туры образования аустенита, а затем охлаждают, погружая в жидкую среду. Образуется неравновесная структура, твердость и прочность стали повыша­ется.

Доэвтектоидные стали нагревают до температуры на 30–50 °С выше ли­нии GS (см. рисунок 18.6). На структуру стали оказывает влияние скорость охлаждения. В растворах электролитов или в холодной воде образуется структура мартенсита; в горячей воде или минеральном масле - структура троостита; в расплавленном свинце – структура сорбита.

Когда требуются высокое сопротивление истиранию и повышенная вяз­кость, производят поверхностную закалку. Металл нагревают пламенем газовой горелки или токами высокой частоты. Повышается твердость и из­носостойкость поверхностных слоев металла, а в глубине изделия сохраня­ют первоначальную структуру и свойства.

Отпуск. Отпуску подвергаются стали, закаленные на мартенсит. Их на­гревают до температуры 200, 450 или 650 °С и затем постепенно охлаждают на воздухе. Это делается для уменьшения внутренних напряжений, пониже­ния хрупкости, повышения вязкости стали. Твердость может остаться без изменения или изменяться в зависимости от максимальной температуры нагрева.

Отжиг. Различают отжиг на равновесное состояние и отжиг на мелкое зерно. При отжиге на равновесное состояние сталь нагревают до состояния аустенита, т. е. выше на 20–50 °С линии GS (см. рисунок 2.6), выдерживают при этой температуре и медленно охлаждают, чаще всего вместе с печью. Твердость стали уменьшается, улучшается ее обрабатываемость. Доэвтектоидная сталь получает ферритно-перлитовую структуру. Литая и перегре-


тая сталь обычно имеет крупнозернистое строение, пониженные механиче­ские свойства. Ее отжигают на мелкое зерно. Нагревают на 20-50 °С выше линии GS, выдерживают до перехода в аустенит, а затем медленно охлаж­дают до получения равновесной структуры. Напряжение в стали уменьша­ется, улучшается обрабатываемость.

Нормализация. При нормализации стальное изделие нагревают до тем­пературы несколько ниже температуры закалки, выдерживают и охлаждают на воздухе. В стали с малым содержанием углерода образуется феррито-перлитовая структура и с повышенным содержанием углерода - сорбитная. В первом случае сталь сохраняет высокую пластичность и ударную вяз­кость, во втором – становится более прочной, но менее пластичной, чем после отжига.

 

Группы А

 

 

 

Марка стали Временное сопротивление σ в, МПа Предел текучести σ т, Н/мм2 Относительное удлинение σ s, % Изгиб на 180° –толщина образца, d –диаметр оправки) для толщин, мм
до 20 свыше 20
СтО Не менее 300 20–23 d = 2a Диа- метр оправки увели­чивает­ся на толщи­ну об- разца
Ст 1кп   Ст 1пс, Ст 1сп 300–390   310–410 32–35   31–34 d = 0, 5a
Ст 2кп   Ст 2пс, Ст 2сп 320–410   330–430 185–215   95–225 30–33   29–32 d = a
Ст Зкп   Ст Зпс, Ст Зсп   Ст 3Гпс Ст 3Гсп 360–460   370–480     370–490 390–570 195–235   205–245     205–245 24–27   23–26     23–26 d = a
Ст 4кп   Ст 4пс, Ст 4сп 400–510   410–530 225–255   235–265 22–25   21–24 d = 2a
Ст 5пс, Ст 5сп   Ст 5Гпс 490–630     450–590 255–285     255–285 17 – 20     17–20 d = 3a
Ст 6пс, Ст 6сп Не менее 500 295–315 12–15

 

Сталь углеродистая качественная конструкционная поставляется с га­рантией химического состава и механических свойств. Она содержит серы не более 0, 04 % и фосфора не более 0, 035 % и отличается несколько более высокими механическими свойствами, чем сталь обыкновенного качества. Она выпускается следующих марок: 05кп, 08кп, 08пс, 08, 10кп, 10пс, 10, 11кп, 15кп, 15пс, 15, 18кп, 20кп, 20пс, 20, 25, 30, 35, 40, 45, 50, 55, 58, 60. Две цифры показывают содержание углерода в сотых долях процента. Применяют эту сталь для деталей машин, сварных конструкций.

Инструментальная нелегированная сталь содержит углерода более 0, 65 %. Подразделяется на качественную марок У7А, У8А, У8ГА, У9А, У10А, У12А, У13А и высококачественную марок У7А, У8А, У8ГА, У9А, У10А, У11А, У12А, У13А. Она имеет высокую твердость, износостойкость, достаточную проч­ность и пластичность, применяется для режущих, штамповых, мерильных инстру­ментов и технологической оснастки.

Для повышения качества стали в ее состав вводят один или несколько легирующих элементов: хром, марганец, кремний, никель, молибден, вана­дий, алюминий, титан, бор. Хромистая сталь имеет высокую прочность, хорошо сваривается; марганцовистая – повышенную прочность, пластич­ность, свариваемость; хромомарганцевая – повышенную прокаливаемость и прочность; хромокремнистая сталь применяется для деталей, испытываю­щих в процессе эксплуатации знакопеременные нагрузки; хромоникелевая имеет высокую прочность, вязкость, прокаливаемость; хромоалюминиевая -повышенную твердость, износостойкость, выносливость.

Маркировка легированной стали осуществляется по буквенно-цифровой сис­теме. Легирующие элементы обозначаются следующими буквами: С – кремний, Г – марганец, X – хром, Н – никель, М – молибден, В – вольфрам, Р – бор, Т–титан, Ю – алюминий, Ф – ванадий, Ц – цирконий, Б – ниобий, А – азот, Д – медь, К – кобальт. Первыми двумя цифрами обозначается содержание углерода в сотых долях процента для конструкционных сталей и первой одной цифрой – в десятых долях процента – для инструментальных сталей. Содержание леги­рующего элемента боле 1 % после буквы ставится в процентах в целых единицах. Например, сталь 12ХН3А расшифровывается так: легированная сталь с содержа­нием углерода 0, 12 %, хрома X – 1 %, никеля Н – 3 %. Буква А в конце указывает на ограничение серы и фосфора до 0, 03 %.

В строительстве применяют преимущественно низколегированные стали с содержанием легирующих элементов не более 2, 5 %.

Химический состав и механические свойства некоторых легированных сталей приведены в таблице 18.3.

Таблица 18.3– Механические свойства легированных сталей после термической

Обработки

Марка стали от, МПа ов, МПа 85, % V, % kcv, Дж/см2
20Г
40Г, 40ГР 58, 8
20Х 58, 8
18ХГ

 

В строительстве сталь применяют для изготовления конструкций, устройства кровель, подмостей, ограждения, для армирования железобетона.

Стальные конструкции испытывают разнообразные нагрузки. Колонны работают на сжатие, балки – на растяжение, рельсы воспринимают ударные воздействия.


Строительные конструкции работают в атмосферных условиях при обычных и пониженных температурах. Для их изготовления применяют хорошо свариваемые стали, не снижающие ударную вязкость вблизи свари­ваемого шва, имеющие высокую пластичность, хорошо обрабатывающиеся резанием.

 

Чугуны

 

Чугуны являются железоуглеродистыми сплавами с содержанием угле­рода более 2, 14 %. Они подразделяются на белые, серые и ковкие.

В белом чугуне весь углерод химически связан с железом в виде цемен­тита FезС. В изломе – белого цвета с характерным блеском. Имеет повы­шенную твердость и хрупкость. Служит полуфабрикатом для переделки в сталь и для получения ковких чугунов.

В серых чугунах углерод полностью или частично находится в свобод­ном состоянии в виде графита. Содержание углерода не превышает 0, 8 %. Из-за графитовых пластинчатых включений серый чугун более хрупкий и менее прочный материал по сравнению со сталью. Предел прочности sв составляет от 100 до 450 МПа, sи – от 280 до 650 МПа, твердость от – 120 до 289 НВ.

Серый чугун модифицируют добавками SiCa, FeSi, Al, Mg. Графит при­обретает шаровидную форму. Механические свойства чугуна повышаются. Его называют высокопрочным. Предел прочности при растяжении sв со­ставляет 350–1000 МПа, твердость – 140–360 НВ.

Серые чугуны называют литейными. Из них методом литья изготавли­вают канализационные трубы, тюбинги метрополитена, отопительные ра­диаторы и др.

Ковкие чугуны получают отжигом (томлением) белого чугуна при тем­пературе 900–950 °С. Графит приобретает форму хлопьев, в результате чего пластичность чугуна повышается. Прочность чугуна sвсоставляет 330–600 МПа, твердость – 165–269 НВ.

Их применяют для деталей, подвергающихся ударным и вибрационным нагрузкам (картеры, редукторы, муфты), для некоторых строительных дета­лей (кронштейны, фитинги).

 

Цветные металлы и сплавы

 

Алюминий и его сплавы. Алюминий – легкий металл плотностью 2700 кг/м3, прочностью при растяжении sв = 80... 100 МПа, твердостью 20 НВ.

Он имеет высокую электропроводность, пластичность, коррозионную стойкость.


В строительстве алюминий применяют в виде: пигмента для приготов­ления красочных составов, которыми окрашивают металлические конст­рукций; газообразователя при получении ячеистых материалов; фольги.

На поверхности алюминия образуется тонкая плотная оксидная пленка, стойкая к атмосферной коррозии. Это позволяет применять его для защиты алюминиевых и других сплавов от коррозии.

Для повышения прочности алюминий легируют марганцем, медью, кремнием, железом и др.

Алюминиевые сплавы подразделяются на литейные и деформируемые.

К литейным относят сплавы алюминия с кремнием (силумины) с содер­жанием кремния от 6 до 13 %, алюминия с кремнием (4–8, 5 %) и медью (4–8, 5 %); сплав алюминия с медью (4–6, 2 %); алюминия с магнием (4, 5–13 %); сплав алюминия с прочими компонентами. Они маркируются буквами АЛ или АК, после которых идет номер сплава.

В технике чаще всего применяются силумины. Для улучшения свойств в их состав, кроме кремния, могут вводиться магний, титан, бериллий. Проч­ность их sв = 128...334 МПа, твердость – 50–90 НВ. Силумины характери­зуются хорошей текучестью в расплавленном состоянии и малой усадкой. Применяют их для изготовления сложных отливок.

К деформируемым сплавам, обрабатываемым давлением, относят: спла­вы алюминия с марганцем (до 0, 8 %); сплавы алюминия с магнием (2, 8 %) –магналии; сплавы алюминия с медью (до 5, 5 %) и магнием (до 0, 8 %) – ду-ралюмины; сплавы алюминия с медью (до 2, 6 %), магнием (до 0, 8 %), крем­нием (1, 2 %) и марганцем (до 0, 8 %) – авиаль; сплавы алюминия с цинком, магнием, медью – высокопрочные алюминиевые сплавы и др.

Самыми распространенными деформируемыми сплавами являются ду-ралюмины. Медь и магний упрочняют сплавы, марганец повышает корро­зионную стойкость. Прочность дуралюминов увеличивается после закалки при температуре 495–525 °С и последующим старением на воздухе в тече­ние 4–5 суток. Для повышения коррозионной стойкости листовой алюми­ний плакируют, т. е. покрывают с двух сторон слоем чистого алюминия, и производят совместную горячую прокатку.

Дуралюмины хорошо деформируются в горячем и холодном состоянии, свариваются точечной сваркой и не свариваются сваркой плавления.

Сплавы алюминия применяются для изготовления прокатных профилей: уголков, швеллеров, двутавров, труб круглого и прямоугольного сечений. Эффективно его применение при возведении легких конструкций зданий и сооружений, особенно в большепролетных сооружениях, а также конструк­ций и изделий, к внешнему виду которых предъявляются повышенные эсте­тические требования (элементы выставочных павильонов, оконных и двер­ных заполнений).


Медь и ее сплавы. Медь – металл красновато-розового цвета. Плот­ность меди составляет – 8, 9 г/см3, температура плавления – 1083 °С, прочность –sв = 150...250 МПа, относительное удлинение d – более 50 %. Она обладает высокой электропроводностью, коррозионной стойкостью. На поверхности меди образуется темная пленка углекислых соединений меди, называемая па­тиной. Чистая медь из-за высокой стоимости и низкой прочности как конст­рукционный материал не применяется. Из-за высокой электропроводности медь используется в основном в электро- и радиотехнике, а из-за высокой теп­лопроводности применяется для различных теплообменников, нагревателей, холодильников. Из-за высокой коррозионной стойкости ее применяют в хими­ческой промышленности для изготовления трубопроводов, насосов и др.

Основное количество меди используется для изготовления сплавов -латуни и бронзы.

Сплавы меди, в которых основным легирующим элементом является цинк, называют латунями. Содержание цинка составляет 4–40 %. Они мар­кируются: Л96, Л90, ..., Л60, где цифры указывают количество меди в про­центах. Прочность латуни sв = 250... 400 МПа, относительное удлине­ние

d = 15... 35 %. Большую группу медно-цинковых сплавов составляют специальные (многокомпонентные) латуни, легированные одним или не­сколькими элементами: алюминием, никелем, марганцем, оловом и др.

Латуни – самые распространенные сплавы на основе меди, которым при­сущи все основные положительные свойства меди: высокая электро- и теплопроводность, пластичность, коррозионная стойкость, но более высо­кая прочность и технологические свойства.

Бронзы - сплавы меди с оловом, алюминием, свинцом, бериллием, кремнием, хромом и другими элементами. Это все сплавы меди, кроме латуней и медно-никелевых сплавов.

Наибольшее применение имеют оловянные бронзы, где олово – основ­ной легирующий элемент (до 10 %) и в качестве добавок вводятся цинк, свинец, фосфор, никель и др. Маркировка бронз расшифровывается сле­дующим образом. Например, Бр ОЦС 4–4-2, 5: Бр – бронза, О – олово, Ц – цинк, С – свинец, цифры 4; 4; 2, 5 – содержание олова, цинка, свинца в про­центах.

Бронзы оловянные подразделяются на два вида – обрабатываемые давлением и литейные. Обрабатываемые давлением имеют прочность sв = 270... 800 МПа и более, относительное удлинение d = 3...40 %, твердость – 60 НВ.

Бронзы обладают удовлетворительной электропроводностью, высокой коррозионной стойкостью, хорошими антифрикционными свойствами. Бронзы, обрабатываемые давлением, обладают хорошей пластичностью, упругостью, сопротивлением усталости.


Применяют бронзы для изготовления водяной и паровой арматуры, подшипников, шестерней, пружин, деталей машин и пр.

 

Арматурная сталь

 

Для армирования железобетонных изделий применяют арматурную сталь. Ее классифицируют по основной технологии изготовления, профилю, условиям применения и виду поставки.

В зависимости от основной технологии изготовления арматуру делят на стержневую, получаемую горячей прокаткой стали (обозначается буквой А); проволочную, получаемую волочением стали в холодном состоянии (обозначается буквой В), и канаты, изготавливаемые из проволочной стали (обозначается буквой К).


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-30; Просмотров: 979; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.132 с.)
Главная | Случайная страница | Обратная связь