Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Метод флуоресцентной гибридизации in situ (FISH) в диагностике хромосомных болезней



Краткий ответ: Метод флюоресцентной гибридизации in situ (FISH — fluorescence in situ hybridization) включа­ет применение уникальных нуклеотидных после­довательностей ДНК в качестве зонда для поиска нужных последовательностей ДНК в материале, полученном от пациента. Метод основан на комплементарном связывании ДНК-зонда с ДНК метафазных хромосом или интерфазных клеток. ДНК-зонд и исследуемую ДНК денатурируют, образуется одноцепочная ДНК. ДНК-зонд до­бавляют к препарату хромосом, инкубируют определенное время. Присутствие или отсутствие меченного флюо­рохромом зонда в составе ДНК после гибридизации определяется при исследовании хромосом с помо­щью флюоресцентной микроскопии.

Развёрнутый ответ: Метод флуоресцентной гибридизации in situ позволяет выявлять индивидуальные хромосомы или их отдельные участки на препаратах метафазных хромосом или интерфазных ядрах на основе комплементарного взаимодействия ДНК-зонда, конъюгированного с флуоресцентной меткой и искомого участка на хромосоме. Для визуализации на хромосоме пептидно-нуклеиновых соединений применяют PNA-зонды на основе белкового продукта.
Метод основан на комплементарном связывании ДНК-зонда с ДНК метафазных хромосом или интерфазных клеток и включает следующие этапы:
1. Денатурация двухцепочечной ДНК зонда и ДНК мишени до одноцепочечных под воздействием высокой температуры или химических агентов.
2. Гибридизация ДНК-зонда с ДНК-мишенью по принципу комплементарности с образованием двухцепочечной гибридной молекулы
3. Постгибридизационная отмывка для удаления негибридизовавшегося ДНК-зонда
4. Анализ гибридизационных сигналов с люминисцентном микроскопе

Преимущества метода молекулярно-генетической диагностики FISH включают быстрый ана­лиз большого числа клеток, высокую чувствитель­ность и специфичность, возможность исследовать некультивируемые и неделящиеся клетки.
Недостатки метода заключаются в невозможности получить информацию о физическом состоянии исследу­емой ДНК или участка хромосомы.
FISH применяют в пренатальной молекулярно-генетической диагностике и для характеристики опухолей; в педиатрической практике его используют, как правило, для иденти­фикации субмикроскопических делеций, ассоции­рованных со специфическими пороками развития. Синдромы, в основе которых лежат микроделеции, раньше считались заболеваниями неизвестной этиологии, так как хромосомные делеции и пере­стройки, вызывающие развитие этих заболеваний, обычно не визуализируются при традиционных методах хромосомного анализа. Такие мелкие де­леции в специфических участках хромосом мож­но с большой точностью выявить методом FISH. К заболеваниям, обусловленным субмикроскопическими делециями, относятся синдромы Прадера-Вилли, Ангельмана, Вильямса, Миллера-Дикера, Смит-Мадженис и велокардиофациальный синдром. FISH облегчает диагностику этих синдромов в нетипичных случаях, особенно в младенческом возрасте, когда еще отсутствуют многие диагностически значимые признаки забо­левания. Применение этого метода молекулярно-генетической диагностики целесообразно также в подростковом и во взрослом возрасте, ког­да типичные клинические признаки заболевания, характерные для детского возраста, претерпевают изменения.

121. ДНК-зонды. Их применение в определении наследственных заболеваний.

Краткий обзор

ДНК – зонд - это короткий фрагмент ДНК, конъюгированный с флуоресцеином, ферментно, или радиоактивным изотопом, который используется для гибридизации с комплементарным участком молекулы ДНК – мишени.

Основная часть

Системы ДНК-диагностики

Информация о всем многообразии свойств организма заключена в его генетическом материале. Так, патогенность бактерий определяется наличием у них специфического гена или набора генов, а наследственное генетическое заболевание возникает в результате повреждения определенного гена. Сегмент ДНК, детерминирующий данный биологический признак, имеет строго определенную нуклеотидную последовательность и может служить диагностическим маркером.

В основе многих быстрых и надежных диагностических методов лежит гибридизация нуклеиновых кислот — спаривание двух комплементарных сегментов разных молекул ДНК. Процедура в общих чертах состоит в следующем.

1. Фиксация одноцепочечной ДНК-мишени на мембранном фильтре.

2. Нанесение меченой одноцепочечной ДНК-зонда, которая при определенных условиях (температуре и ионной силе) спаривается с ДНК-мишенью.

3. Промывание фильтра для удаления избытка несвязавшейся меченой ДНК-зонда.

4. Детекция гибридных молекул зонд/мишень.

В диагностических тестах, основанных на гибридизации нуклеиновых кислот, ключевыми являются три компонента: ДНК-зонд, ДНК-мишень и метод детекции гибридизационного сигнала. Система детекции должна быть в высшей степени специфичной и высокочувствительной.

*Флуоресцеин (диоксифлуоран, уранин А) — органическое соединение, флуоресцентный краситель. В аналитической химии флуоресцеин используется в качестве люминесцентного кислотно-основного индикатора. В биохимии и молекулярной биологии изотиоцианатные производные флуоресцеина в качестве биологических красок для определения антигенов и антител.

* Детекция – это обнаружение, выявление, нахождение чего либо.

*конъюгирование=сопряжение

*Если в одной " пробирке" провести плавление и отжиг смеси ДНК, например, человека и мыши, то некоторые участки цепей ДНК мыши будут воссоединяться с комплементарными участками цепей ДНК человека с образованием гибридов. Число таких участков зависит от степени родства видов. Чем ближе виды между собой, тем больше участков комплементарности нитей ДНК. Это явление называется гибридизация ДНК-ДНК.

 

122. Методы и условия применения прямой ДНК-диагностики.

Краткий обзор:

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы).

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций. Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др.

Полный ответ:

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %. Однако на практике указанные методы могут применяться при определенных условиях:

1) известной цитогенетической локализации гена, ответственного за развитие наследственного заболевания,

2) должен быть клонированным ген заболевания и известна его нуклеотидная последовательность.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы). Высокая точность метода прямой ДНК-диагностики в большинстве случаев не требует ДНК-анализа всех членов семьи, так как выявление мутации в соответствующем гене позволяет почти со 100-процентной точностью подтвердить диагноз и определить генотип всех членов семьи больного ребенка, включая гетерозиготных носителей.

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций.

Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др.

Однако к настоящему времени гены многих заболеваний не картированы, неизвестна их экзонно-интронная организация, и многие наследственные болезни отличаются выраженной генетической гетерогенностью, что не позволяет в полной мере использовать прямые методы ДНК-диагностики. Поэтому информативность метода прямой ДНК-диагностики широко варьирует. Так, при диагностике хореи Гентингтона, ахондроплазии она составляет 100 %, при фенилкетонурии, муковосицидозе, адреногенитальном синдроме - от 70 до 80 %, а при болезни Вильсона-Коновалова и миопатии Дюшенна/Бекера — 45-60 %. В связи с этим используются косвенные методы молекулярно-генетической диагностики наследственных болезней.

 

Вопрос №123


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 4374; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.026 с.)
Главная | Случайная страница | Обратная связь