Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Средневековая наука и технические достижения
Великие технические изобретения, сделанные в средневековье, оказали огромное влияние на все области экономики и культуры, в том числе и на развитие науки. Среди таких изобретений наиболее значимыми стали водяная и ветряная мельницы, морской компас, порох, очки, бумага, механические часы. Почти все эти изобретения пришли в Европу с Востока. Водяная мельница и водяной двигатель описаны, как мы уже отмечали, Витрувием, но только в средние века они стали широко использоваться. Идея водяного привода (двигателя) была реализована вначале для перемалывания зерна (собственно для построения мельниц), но затем и для выполнения других работ, например в суконном производстве, для вытягивания проволоки, для толчения руды. Использование изначально вращательного движения колеса с горизонтальной осью вращения для осуществления поступательного движения или вращения в других плоскостях потребовало применения механизмов, преобразующих движение. Для этого были придуманы зубчатое зацепление цевочного (пальцевого) типа и коленчатый рычаг. Ветряные мельницы появились в Европе в начале XII в., но широкое распространение получили с XV в. Для изготовления механизмов водяных и ветряных мельниц, их сборки требовалась высокая квалификация мастеров, которые должны были обладать обширными знаниями не только в механике, но и в кузнечном деле, и в гидротехнике и аэродинамике (в современной терминологии). Механические часы появились в средневековой Европе прежде всего как часы башенные, служащие для указания на время богослужения. До изобретения механических часов для этого использовался колокол, в который бил часовой, определявший время по песочным часам – каждый час. Поэтому термины “часы” и “часовой” имеют одинаковое происхождение. Механические часы на башне Вестминтерского Аббатства появились в 1288 г. Позже механические башенные часы стали использоваться во Франции, Италии, Германских государствах. Существует мнение, что механические часы изобрели мельничные мастера, развивая идею о непрерывном и периодическом движении мельничного привода. Главной задачей при создании часового механизма было обеспечение точности хода или постоянства скорости вращения зубчатых колес. Для изготовления часов требовалась высокая точность обработки деталей, высокая точность сборки, подбор материала деталей. Разработка часовых механизмов была невозможна без технических знаний, проведения математических расчетов. Измерение времени имеет прямую связь и с астрономией. Таким образом, часовое дело соединило механику, астрономию, математику в решении практической задачи измерения времени. Компас как устройство, использующее ориентацию естественного магнита в определенную сторону, изобретен в Китае. Китайцы приписывали способность ориентации естественных магнитов воздействию звезд. В I – III вв. компас стал применяться в Китае как “указатель Юга”. Как попал компас в Европу до сих пор не известно. Начало его применения европейцами в мореплавании относится к XII в. Применение компаса на судах явилось важной предпосылкой географических открытий. Свойство компаса впервые обстоятельно представил французский ученый Пьер да Марикур (Петр Перегрин). Он описал в связи с этим и свойства магнитов, и явление магнитной индукции. Компас стал первой действующей научной моделью, на основе которой развивалось учение о притяжениях, вплоть до великой теории Ньютона. Порох использовался в Китае уже в VI в. при изготовлении ракет, фейерверков. Над открытием секрета пороха, а именно как приготовить смесь, сгорающую без воздуха, трудились многие европейские алхимики. Но удача улыбнулась фрайбургскому монаху Бертольду Шварцу. Порох стал играть важную роль в военном деле с XIV в. только после изобретения пушки, родоначальницей которой явилась “огненная труба” византийцев. Вскоре за пушкой появились ружья и мушкеты. Изобретение пороха имело не только военные последствия. Изготовление пороха и его взрыв, полет снаряда из пушки выдвинуло вопросы научного, теоретического характера. Это прежде всего изучение процессов горения и взрыва, вопросов, связанных с выделением и передачей тепла, вопросов точной механики и технологии, связанные изготовлением орудийных стволов, вопросов баллистики. Пушка, таким образом, “организовала” не только военные полигоны, но и обширные “полигоны” для научных исследований. Бумага была нужна науке “как воздух”. Изобретенная в Китае во II в., она появилась в VI-VII вв. в Японии, Индии, Средней Азии, в VIII в. – на арабском Востоке. В Европу бумага попала через арабов в XII в. В Испании, впервые в Европе, в начале XII в. было организовано производство бумаги сначала из хлопка, затем из более дешевого сырья - из тряпья и отходов текстильного производство. Вслед за бумагой, ставшей несравненно более дешевым писчим материалом, чем пергамент, появилось и печатание. Предшественницей книгопечатания была ксилография (от греч. “xylon”- срубленное дерево и “grapho” - пишу), то есть гравирование на дереве. По гравюрам на дереве можно было тиражировать печатные тексты. Китайские мастера изобрели подвижный шрифт в начале XI в., но в Европе он появился лишь в XVв. Роль книгопечатания в научном прогрессе и распространении знаний трудно переоценить. Очки были изобретены в Италии. По одним сведениям это изобретение относится к 1299 г. и принадлежит Сильвино Армати. Другие полагают, что очки появились в Италии не раньше 1350 г. Существует мнение, что успехи просвещения в эпоху Возрождения были достигнуты во многом благодаря изобретению очков. Очковые линзы стали основой при создании таких оптических инструментов, как микроскоп и телескоп. Общая характеристика средневековой науки Средневековая наука развивалась в сложных экономических и политических условиях. Античные традиции в наибольшей степени сохранялись в Византии, чье научное наследие в основном бесследно исчезло. К XV в. оказался разрушенным и мусульманский мир, потерявший свою интеллектуальную силу. Но к этому времени на сравнительно высокий интеллектуальный уровень поднялась Западная Европа, прошедшая путь от крушения Западной Римской империи до начала Возрождения. Основными чертами средневековой науки можно считать следующие. В средние века не было значительных прорывов в науке. Однако упадок классической цивилизации не стал катастрофой для науки. Новая цивилизация обрела механизмы передачи научных знаний. Мусульманская и европейская культуры сохранили письменные памятники древних ученых. Античная наука создала такой высокий интеллектуальный потенциал, такой объем знаний, который позволил науке вначале выжить, а затем начать новый подъем. Возникшие мировые религии - христианство и ислам - явились естественной реакцией на деградацию и упадок античного мира. На протяжении многих веков, особенно в раннее средневековье, церковь имела монополию на ученость и образование. Церковные школы и монастыри обеспечивали обучение, сохранение знаний и подготовку духовенства. Из церковных школ выросли первые европейские университеты с твердыми курсами обучения семью свободным искусствам. Наряду с подготовкой духовенства университеты давали и светские знания. В средние века Европой восприняты и разработаны важнейшие технические достижения, оказавшие могучее влияние на дальнейшее развитие науки. К ним относятся прежде всего водяной и ветряной двигатели, механические часы, компас, порох, бумага, очки.
Наука эпохи возрождения. Эпоха искусства Леонардо да Винчи Эпоха европейского Возрождения охватывает в основном период XV -–XVI вв. Важной чертой эпохи Возрождения явился переход к новому мышлению, основным содержанием которого стал гуманизм. Гуманисты выступали за создание нового уклада жизни, за возврат к духовным ценностям античного мира. В памятниках греческой культуры гуманисты искали прежде всего стороны, связанные с ценностями искусства – благородство чувств, красоту, изящество. В эпоху Возрождения блестящее развитие получает литература и изобразительное искусство – живопись, скульптура. С этой эпохой связаны великие имена Леонардо да Винчи (1452 – 1519), Уильяма Шекспира (1564 – 1616), Мигеля де Сервантеса Сааведра (1547 – 1616) и многих других выдающихся деятелей искусства. Искусство проникло во все сферы человеческой деятельности. Огромное влияние оказало искусство и на развитие науки. Если в античном мире наука была философична, созерцательна, то в эпоху Возрождения она становится активной, творческой. Изобретатель, мастер, художник, архитектор и, наконец, ученый – профессии в эпоху Возрождения часто неразделимые. В наивысшей степени эти грани человеческой деятельности соединились в творчестве Леонардо да Винчи. С раннего детства Леонардо проявил огромное влечение к живописи и талант художника. Отец Леонардо да Винчи, нотариус по профессии, отдал его на обучение к известному живописцу – Вероккио. Имя великого художника Леонардо да Винчи известно любому образованному человеку. Такие его полотна, как “Тайная вечеря”, портрет Моны Лизы (“Джоконда”) стали шедеврами изобразительного искусства. Изобретательская и научная деятельность Леонардо да Винчи оставалась долгие годы неизвестной. Только в конце XVIII века началось изучение трудных для понимания рукописей Леонардо. Эти рукописи написаны особым способом – так что, и их можно читать только в зеркале. В настоящее время историки техники насчитывают сотни изобретений Леонардо да Винчи, найденных в его записных тетрадях. Наиболее часто эти изобретения изображены в виде чертежей с короткими ремарками. Наиболее известными изобретениями Леонардо да Винчи стали приспособления для передачи движения (например, цепная передача, ременная передача), роликовые опоры, “кардановое” сцепление, различного рода станки (молотобойный станок, станок для нанесения насечки на инструменты), приспособления для чеканки монет, ткацкие машины, музыкальные инструменты, паровая пушка. Много изобретений Леонардо да Винчи сделал в области гидравлики. Он принимал участие в организации мелиорационных работ, в устройстве гидросооружений в Наваре, проектировал отвод русла реки Арно у Пизанского моста. Леонардо разработал механизмы, сходные по устройству с современными землечерпалками, усовершенствовал конструкцию шлюзов. При создании своих изобретений Леонардо да Винчи неизбежно сталкивался с вопросами научного характера, в частности в его работах отражены проблемы нахождения центра тяжести, условий равновесия. В этих проблемах Леонардо движется от частного к общему, от техники к науке. Леонардо был искусным музыкантом и певцом, но и здесь его привлекала научная сторона. Он сделал ряд ценных наблюдений по теоретической акустике. Так, например, при игре на лютне он заметил явление резонанса. Вот что он пишет: “Удар колокола вызывает ответный звук и небольшое колебание в другом подобном ему колоколе, а звучащая струна лютни вызывает похожий звук и небольшое дрожание у соответствующей струны другой лютни: в этом ты можешь убедиться, положив соломинку на струну, соответствующую звучащей струне”. Леонардо было известно, что звук распространяется через жидкие и твердые тела, при этом распространение в твердом теле вызывает меньшие потери звука. Леонардо да Винчи выдвинул универсальную физическую концепцию волнового движения. По этой концепции свет, звук, запах, магнетизм и даже мысль распространяются волнами. Много размышлял Леонардо да Винчи и над проблемой полета, над механизмом летания птицы. Биографы Леонардо рассказывают, что он имел обыкновение посещать рынки, где продавались птицы. Купив птицу, Леонардо тотчас отпускал ее и сколько хватало возможности следил за тем, как она летит – так он изучал механизм полета и пытался воссоздать его в рисунках и чертежах. Несомненно, мечтой Леонардо был полет человека. Он спроектировал в 1490 году, а возможно и построил, модель летательного аппарата с крыльями, как у летучей мыши. Аппарат должен был использовать мускульные усилия рук и ног. Леонардо понимал существование подъемной силы крыла, думал о полете с помощью ветра (парящем полете). Самый ранний, дошедший до нас проект парашюта принадлежит Леонардо да Винчи. Он пишет: “Если человек имеет шатер из полотна шириной 12 локтей и 12 локтей в высоту, то он может прыгать с любой высоты без вреда для себя”. Цитата из его рукописей “…винтовой аппарат, который если его вращать с большой скоростью, ввинчивается в воздух и поднимается вверх” несомненно может рассматриваться как проект геликоптера. Проектам летательных аппаратов Леонардо да Винчи посвятил почти четверть века своей жизни, возможно поэтому современники считали его то магом, то слегка сумасшедшим. Многие, даже большинство проектов и идей Леонардо остались невоплощенными. И причина здесь не только в недостатке средств и времени на реализацию столь многочисленных идей. Эти идеи шли к нему скорее от искусства, чем от науки. Без количественных и фундаментальных знаний статики, динамики, математики (алгебра, которая только начинала развиваться в то время, была Леонардо почти незнакома), была не возможна “техническая экспертиза” идей. Многие из них принципиально нереализуемы, другие же для реализации требуют аппарата математических и физических исследований, тогда не существовавшего. Не избежал Леонардо и глубоких заблуждений. Так, в частности, он считал, что изображения предметов как бы “присутствуют” во всех точках пространства. Доказательством этого он считал возможность получения изображений с помощью малых отверстий. Сколько отверстий, столько может быть получено и изображений, то есть каждая точка пространства (отверстие) дает изображение предметов, поэтому мы их и видим. Такое представление о зрении перекликается с концепциями Платона и Лукреция, по которым глаз воспринимает оболочки предметов. Великой заслугой Леонардо является обращение к природе как источнику технических идей, и, с другой стороны, доказательство возможности объяснять природу техникой. Леонардо да Винчи одним из первых применил в науке эксперимент. В его записках содержится много пометок о взаимоотношении между теорией и практикой. Вот примеры его метких высказываний. “Опыт никогда не обманывает”. “Не слушай учение тех мыслителей, доводы которых не подтверждаются опытом”. “Те, которые отдаются практике без науки, похожи на моряка, отправляющегося в путь без руля и без компаса и никогда не знающего наверное, куда он плывет. Практика всегда должна быть на хорошем знании”. Существуют различные суждения о влиянии Леонардо да Винчи на развитие науки. Одни считают, что это влияние не было значительным, поскольку он не оставил никакой научной школы, а рукописи научных трудов Леонардо долгое время оставались неизвестными. По мнению других его идеи были известны в научной среде. Об этом, в частности, свидетельствуют труды итальянских ученых XVI века Николо Тарталья (1499 – 1552), Иеронима Кардана (1501 – 1576), Джована Бенедетти (1530 – 1590), в которых эти идеи содержатся, хотя и без ссылки на Леонардо да Винчи.
Популярное:
|
Последнее изменение этой страницы: 2016-07-14; Просмотров: 1291; Нарушение авторского права страницы