Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Конспект лекции по статистикаСтр 1 из 25Следующая ⇒
БАРЛИАНИ А.Г. Конспект лекции по статистика ГЛАВА 1 СТАТИСТИКА КАК НАУКА, ЕЁ ЗАДАЧИ И ОРГАНИЗАЦИЯ Понятие статистики В современном обществе в механизме управления экономикой, важную роль играет статистика. Она осуществляет сбор, научную обработку, анализ и обобщение информации, которая характеризует развитие экономики страны, культуры и уровня жизни населения. В результате предоставляется возможность выявления взаимосвязей в экономике, изучение динамики ее развития, проведения международных сопоставлении и в конечном итоге – принятия эффективных управленческих решений на государственном и региональном уровнях. Термин «статистика» происходит от латинского слова status, что в средние века означало политическое состояние государства. В науку этот термин введен немецким ученым Готфридом Ахенвалем (1719-1772 гг.), и означал он тогда государствоведение. Прежде чем стать наукой в ее современном понимании статистика прошла многовековую историю развитии. Числовые данные, относящиеся к тем или иным явлениям, начали применяться уже в глубокой древности. Так, известно, что еще за 5 тысяч лет до н.э. проводился подсчет населения в Китае, велся учет имущества в Древнем Риме, в средние века проводились переписи населения, домашнего имущества, земель. Эти сведения использовались в основном в военных целях и при обложении налогами. В столь отдаленные времена осуществлялся лишь сбор статистических сведений, а их обработку и анализ, то есть зарождение статистики как науки следует отнести ко второй половине XVII в. Именно в это время профессор физиологии и права Г. Ахенваль с 1746 г. начал читать впервые в Марбургском, а затем в Геттингенском университетах новую учебную дисциплину, которую он и назвал статистикой. Основным содержанием этого курса было описание политического состояния и достопримечательностей государства. Это направление развития статистики получило название описательного. Содержание, задачи, предмет изучения статистики в понимании Г. Ахенваля были далеки от современного взгляда на статистику как науку. Гораздо ближе к современному пониманию статистики была английская школа политических арифметиков, которая возникла на 100 лет раньше немецкой описательной школы, ее основателями были В. Петти (1623-1687 гг.) и Дж. Граунт (1620-1674 гг.). Политические арифметики путем обобщения и анализа фактов стремились цифрами охарактеризовать состояние и развитие общества, показать закономерности развития общественных явлений» проявляющихся в массовом материале. История показала, что именно школа политических арифметиков явилась истоком возникновения современной статистики как науки. В. Петти по праву считается создателем экономической статистики. Большим шагом в развитии статистической науки послужило применение экономико-математических методов и широкое использование компьютерной техники в анализе социально-экономических явлений. В настоящее время ведется работа по совершенствованию статистической методологии и завершению перехода Российской Федерации на принятую в международной практике систему учета и статистики в соответствии с требованиями развития рыночной экономики. Таким образом, история развития статистики показывает, что статистическая наука сложилась в результате теоретического обогащения накопленного человечеством передового опыта учетно-статистических работ, обусловленных, прежде всего, потребностями управления жизни общества. Развитие статистической науки, расширение сферы применения практических статистических исследований, ее активное участие в механизме управления экономикой привели к изменению содержания самого понятия «статистика». В настоящее время термин «статистика» употребляется в трех значениях: 1) отрасль практической деятельности («статистический учет») по сбору, обработке, анализу и публикации массовых цифровых данных о самых различных явлениях и процессах общественной жизни; эту деятельность на профессиональном уровне осуществляет государственная статистика; 2) совокупность цифровых сведений, статистические данные, представляемые в отчетности предприятий, организаций, отраслей экономики, а также публикуемые в сборниках, справочниках, периодической прессе, которые являются результатом статистической работы; 3) отрасль общественных наук, специальная научная дисциплина, изучаемая в высших и средних специальных учебных заведениях. Статистика как наука представляет собой целостную систему научных дисциплин: теория статистики, экономическая статистика и ее отрасли, социальная статистика и ее отрасли. Теория статистики является наукой о наиболее общих принципах и методах статистического исследования социально-экономических явлений. Она разрабатывает понятийный аппарат и систему категорий статистической науки, рассматривает методы сбора, сводки, обобщения и анализа статистических данных, то есть общую методологию статистического исследования массовых общественных процессов. Таким образом, теория статистики - методологическая основа всех отраслевых статистик. Экономическая статистика разрабатывает и анализирует синтетические показатели, включим такие макроэкономические показатели как национальное богатство (НБ), национальный доход (НД), валовой внутренний продукт (ВВП), валовой национальный продукт (ВНП) и др., отражающие состояние национальной экономики; структуру, пропорции, взаимосвязь отраслей; рассматривает особенности размещения производственных сил, состав и использование материальных, трудовых и финансовых ресурсов; наконец, осуществляет построение и анализ общей макростатистической модели рыночной экономики в виде системы национальных счетов (СНС). Отрасли экономической статистики - статистика промышленности, сельского хозяйства, строительства, транспорта, связи, труда, природных ресурсов, охраны окружающей среды и т.д. - разрабатывают и изучают статистические показатели развития соответствующих отраслей. Социальная статистика формирует и анализирует систему показателей, комплексно характеризующих различные стороны социальных условий и образа жизни населения; ее отрасли - статистика народонаселения, политики, культуры, здравоохранения, науки, просвещения, права и т.д. Статистика развивается как единая наука, и развитие каждой отрасли содействует ее совершенствованию в целом. Между наукой-статистикой и практикой существует тесная взаимосвязь: статистика использует данные практики, обобщает и разрабатывает методы проведения статистических исследований. В свою очередь в практической деятельности применяются теоретические положения статистической науки для решения конкретных управленческих задач. Знание статистики необходимо современному специалисту для принятия решений в условиях стохастики (когда анализируемые явления подвержены влиянию случайностей), для анализа элементов рыночной экономики, в сборе информации, в связи с увеличением числа хозяйственных единиц и их типов, аудите, финансовом менеджменте, прогнозировании. Курс «Теории статистики» открывает первый этап изучения в высшей школе цикла статистических дисциплин, направленный на формирование необходимых профессиональных знаний у экономистов, менеджеров, руководителей предприятий. Предмет статистики Как и всякая наука, статистика имеет свой предмет. Предметом изучения статистики является количественная сторона массовых общественных явлений в неразрывной связи с их качественной стороной или их содержанием, а также количественное выражение закономерностей общественного развития в конкретных условиях места и времени. Свой предмет статистика изучает методом обобщающих показателей. Она анализирует также природные ресурсы и природные условия, поскольку они влияют на жизнь общества. В определении предмета статистики подчеркивается несколько характерных особенностей статистики как науки. Статистика изучает: а) массовые общественные явления при помощи статистических показателей (численность населения, количество произведённой в стране конкретной промышленной, сельскохозяйственной, строительной и другой продукции за отделенный период) и их динамику (изменение уровня жизни населения и т.д.); б) количественную сторону массовых общественных явлений и дает количественное цифровое освещение общественных явлений; в) количественную сторону общественных явлений в неразрывной связи с их качественным содержанием; наблюдает обществе процесс перехода количественных изменений в качественные (так, количественные изменения структуры экспорта и импорта товаров свидетельствуют о качественных изменениях в экономике страны); г) количественную сторону общественных явлений в конкретных условиях места и времени (динамику численности населения и занятости его по секторам экономики, объема производства, распределения доходов, потребления, и т.д.), характеризует явления общественной жизни в конкретных пространственных и временных границах; д) количественные связи между общественными явлениями с помощью специальной методологии, использует математические методы при исчислении ряда статистических показателей (ошибок выборки, тесноты связи и т.д.), в свою очередь гуманитарные и естественные науки широко применяют в своих исследованиях методы статистики для сбора, обработки и анализа данных. Теоретической основой статистики являются положения социально-экономической теории, которые рассматривают законы развития социально-экономических явлений, выясняют их природу и значение в жизни общества. Опираясь на знание положений экономической теории, статистика анализирует конкретные формы проявления категорий, оценивает размеры явлений, осуществляет разработку адекватных методов их изучения и анализа. В условиях процесса познания связь между экономической теорией и статистикой имеет ступенчатый характер: экономическая теория - статистика - экономическая теория и т.д. Итак, статистика - отрасль общественной науки, изучающая методом обобщающих показателей количественную сторону качественно определенных массовых социально-экономических явлений и закономерностей их развития в конкретных условиях места и времени. Методология статистики Для изучения предмета статистики разработаны и применяются специфические приемы, совокупность которых образует методологию статистики (методы массовых наблюдений, группировок, обобщающих показателей, динамических рядов, индексный метод и др.) Применение в статистике конкретных методов предопределяется поставленными задачами и зависит от характера исходной информации. Общей основой разработки и применения статистической методологии является диалектический метод познания, согласно которому общественные явления и процессы рассматриваются в развитии, взаимной связи и причинной обусловленности. Знание законов общественного развития создаст фундамент, с помощью которого можно понять и правильно истолковать явления, подлежащие статистическому исследованию, выбрать надлежащую методику их изучения и анализа. При этом статистика опирается на такие диалектические категории, как количество и качество, необходимость и случайность, причинность, закономерность, единичное и массовое, индивидуальное и общее. Статистические методы используются комплексно (системно). Это обусловлено сложностью процесса экономико-статистического исследования, состоящего из трех основных стадий: первая - сбор первичной статистической информации; вторая - статистическая сводка и обработка первичной информации; третья - обобщение и интерпретация статистической информации. На первой стадии статистического исследования в связи с необходимостью учета всего многообразия фактов и форм осуществления социально-экономических процессов и в соответствии с их массовым характером применяется метод массового статистического наблюдения, обеспечивающий всеобщность, полноту и представительность (репрезентативность) полученной первичной информации. На второй стадии собранная в ходе массового наблюдения информация подвергается обработке методом статистических группировок, позволяющим выделить в изучаемой совокупности социально-экономические типы; совершается переход от характеристики единичных фактов к характеристике данных, объединенных в группы. Методы группировки различаются в зависимости от задач исследования и качественного состояния первичного материала. На третьей стадии проводится анализ статистической информации на основе применения обобщающих статистических показателей: абсолютных, относительных и средних Величин, вариации, тесноты связи и скорости изменения социально-экономических явлений во времени, индексов и др. Проведение анализа позволяет проверить причинно следственные связи изучаемых явлений и процессов, определить влияние и взаимодействие различных факторов, оцепить эффективность принимаемых управленческих решений, возможные экономические и социальные последствия складывающихся ситуаций. При изучении статистической информации широкое применение имеют табличные и графические методы. Тесты к главе 1 1. Статистическая совокупность - это: а) совокупность статистических показателей, отражающая взаимосвязи, которые объективно существуют между явлениями; б) конкретные численные значения статистических показателей; в) совокупность социально-экономических объектов или явлений общественной жизни, объединенных единой закономерностью, общей связью, но отличающихся друг от друга отдельными признаками. 2. Признак- это: а) изменение величины либо значения признака; б) качественная особенность единицы совокупности; в) первичный элемент статистической совокупности.
Статистические таблицы Статистическая таблица является средством оформления результатов сводки и группировки, а также орудием анализа статистических данных и их графического представления. Статистическая таблица состоит из названия таблицы, подлежащего, сказуемого и значений статистических показателей ( например, числовые данные ). Из названия таблицы становится известно: а) какой круг вопросов излагает и иллюстрирует таблица; б) каковы географические границы совокупности объектов, представляемых таблицей; в) каковы периоды или моменты времени соответствуют данным таблицы; г) каковы единицы измерения ( если они одинаковы для всех табличных клеток ). Если единицы измерения неодинаковы, то в верхних или боковых заголовках обязательно следует указывать, в каких единицах приводятся статистические данные ( тонн, штук, рублей и пр. ). Подлежащее таблицы – это перечень наименований единиц совокупности, т. е. объект изучения. Сказуемое таблицы – это наименования статистических показателей, характеризующих подлежащее. Подлежащее располагается обычно слева в виде названий строк, сказуемое – в виде названий граф. Основой статистической таблицы является ее макет – графы (столбцы ) и строки, имеющие свои заголовки, наименования. Для полной таблицы следует внести конкретные данные в пересечение каждой строки и графы. По построению подлежащего таблицы могут быть простыми, групповыми и комбинированными. Простой называется такая статистическая таблица, в подлежащем которой нет группировок. Простые таблицы бывают перечневые ( подлежащее - перечень единиц, составляющих объект изучения ), территориальные ( дается перечень территорий, стран, областей и пр. ), хронологические ( в подлежащем приводятся периоды времени или даты ).
Рис 4.1. Макет статистической таблицы
Групповыми называются таблицы, в подлежащем которых изучаемый объект разделен на группы по какому-либо признаку. Комбинированной таблицей называется такая, когда в подлежащем дается группировка совокупности по нескольким признакам, взятым в комбинации. Таблицы различаются и по разработке сказуемого: простая и сложная. Простая разработка сказуемого предусматривает параллельное расположение показателей, а сложная – комбинированное. Так, например, при простой разработке сказуемого сначала могут быть приведены графы, содержащие данные о численности населения с соответствующим уровнем образования ( начальное, среднее и т. д. ). При сложной разработке сказуемого после графы численности населения с каким-либо конкретным уровнем образования приводятся в отдельных графах данные о соответствующей численности мужчин и женщин. Практикой выработан ряд требований к составлению и оформлению таблиц: 1. В таблице желательно давать нумерацию граф. Это облегчает пользование таблицей, дает возможность лучше ориентироваться, показывает способ расчета цифр в графах. Первые графы, содержащие подлежащее, обозначаются заглавными буквами алфавита; графы, содержащие сказуемое, нумеруются арабскими цифрами. Заглавия строк подлежащего и граф сказуемого должны быть сформулированы кратко, точно и ясно. Все слова в заголовках подлежащного и сказуемого таблицы записываются по возможности полностью. Заголовки граф следует сформулировать так, чтобы были ясны смысл данной величины и порядок ее расчета. 2. Приводимые в подлежащем и сказуемом признаки должны быть расположены в логическом порядке с учетом необходимости рассматривать их совместно. Обычный принцип размещения – от частного к общему, т. е. сначала показывают слагаемые, а в конце подводят итоги ( если это необходим ). Когда приводятся не все слагаемые, а лишь наиболее важные из них, применяется противоположный принцип – сначала показывают общие итоги, а затем выделяют наиболее важные части ( «Итого», «Всего», «Из них» ). 3. Таблица по возможности должна быть краткой, но может сопровождаться примечаниями, в которых указываются источники данных, более подробно раскрывается содержание показателей, дается другие пояснения, а также оговорки (если таблица содержит сведения, полученные в результате вычислений). 4. При оформлении таблиц обычно применяются условные обозначения: - знак «-«, когда явление отсутствует; - « » если явление не имеет смыслового содержания; - многоточие «…», когда отсутствуют сведения о его размере ( или делается запись «Нет сведений». 5. Если сведения имеются, но числовое значение меньше принятой в таблице точности, оно выражается дробным числом ( 0, 0 ). Округленные числа приводятся в таблице с одинаковой степенью точности ( до 0, 1; 0, 01 и т. п. ). Проценты роста во многих случаях целесообразно (300% и более) заменять отношениями в разах. Например, писать не «1000%», а «в 10, 02 раз».
Статистические графики Графиками в статистике называются условные изображения числовых величин и их соотношений в виде различных геометрических образов – точек, линий, плоских фигур и т. п. Графические образы придают наглядность исходным данным, помогают представить закономерности, которые часто трудно заметить в сложных статистических таблицах и больших числовых массивах. История статистики дает множество примеров использования графических образов для наглядного представления явлений. К настоящему времени основные графические реализованы в системах обработки электронных таблиц ( типа MS Excel ) и статистического анализа данных ПЭВМ ( STATISTICA, SPSS, STATGRAPH, SAS и т. д. ). Многообразие видов статистических графиков объясняется разными целями, способами построения, глубиной отображения явлений и процессов. Поэтому важно не только знать виды графиков, но и владеть методикой их построения. Каждый график состоит из графического образа и вспомогательных элементов. Графически образ – это совокупность точек, линий и фигур, с помощью которых изображаются статистические данные. Вспомогательными элементами графика являются: 1) поле графика – это пространство, в котором размещаются графические образы. Поле характеризуется его форматом, т. е. размером и пропорциями; 2) пространственные ориентиры, определяющие расположение графических образов. Пространственные ориентиры задаются системой координатных сеток или контурных линий, которые делят поле графика на части. В статистических графиках используются как прямоугольные, так и полярные системы координат; 3) при необходимости сопоставить графическое отображение объекта и его реальные размеры указываются масштабные ориентиры. Масштабные ориентиры системой масштабных шкал или масштабными знаками. Масштабные шкалы сообщаются для каждой координатной оси графика. Масштабные знаки используются преимущественно для статистических карт.; 4) экспликация графика, состоящая из объяснения предмета, изображаемого графиком (его названия ) и смыслового значения каждого знака, применяемого на графике. Название графика должно кратко и точно рассказывать его содержание. Пояснительные тексты могут располагаться в пределах графического образа или рядом с ним ( ярлыки ), а также выноситься за его пределы ( ключ ). Статистические графики можно классифицировать по назначению ( содержанию ), способу построения и характеру географического образа. По назначению можно выделить графики сравнения, графики различных относительных величин ( структуры, динамики и т. п. ), графики вариационных рядов, графики размещения по территории, графики взаимосвязанных показателей. Возможны разные комбинации, например, отображение вариации во времени или изменение взаимосвязанных показателей. По способу построения графических образов можно выделить: - диаграммы, представляющие графическое изображение статистических данных, наглядно показывающее соотношение между сравниваемыми величинами; - картограммы, представляющие контурную географическую карту, на которой штриховкой или иным способом показана сравнительная интенсивность изучаемого явления в пределах отдельной единицы территориального деления. Разновидностью картограммы является картодиаграмма, когда сравнительная интенсивность характеризуется диаграммной фигурой ( изображением леса, пашни, одежды и т. п. ) и ее размерами. В настоящее время для графического отображения чаще применяют диаграммы. Это могут быть диаграммы точечные, линейные, плоскостные и объемные, Видами плоскостного графика являются столбиковые, квадратные, круговые, секторные, временные, фигурные диаграммы. Относительные показатели Относительные показатели получают в результате сравнения двух показателей. Знаменатель отношения, т.е. та величина, с которой сравнивают другую, называется основанием или базой сравнения. Если основание единица, то относительная величина - коэффициент, если основание 100, то относительная величина - процент, если основание - 1000, то относительная величина измеряется в промилле. Различают следующие виды относительных величин: относительные величины планового задания, выполнения плана, структуры, координации, интенсивности, уровня экономического развития, динамики и сравнения. Относительные показатели планового задания представляют собой отношение величины показателя, который определен на планируемый период, к величине, принятой за базу сравнения. Относительные показатели выполнения плана дают количественную характеристику выполнения плановых заданий и выражаются в процентах. Исчисляют эту относительную величину по формуле: Относительные показатели структуры представляют собой соотношение размеров частей и целого и выражаются в долях единицы (коэффициентах) и процентах. Пример расчета относительных величин структуры показан в табл.2. Таблица 2 - Структура промышленно-производственного персонала фирмы
Как показывает табл.2, в отчетном периоде в фирме увеличилась доля рабочих и в два раза снизилась доля руководителей и специалистов. Такого рода изменения называют структурными сдвигами. Относительные показатели координации можно рассчитать, если базой сравнения является не общий итог, а какая-то одна часть совокупности, по отношению к которой определяются доли других частей совокупности. Относительные величины координации численности рабочих с руководителями, специалистами и служащими по данным табл.2, показывают, что в базисном периоде на 100 рабочих фирмы приходилось 74 человек руководителей, специалистов и служащих (64: 86 х 100), а в отчетном уже 67 человек (44: 66 х 100). Относительные показатели интенсивности получают путем сравнения объемов разных совокупностей, находящихся в определенной связи друг с другом. Например, выпуск товарной продукции и численность, территория и население. Сравнивая эти совокупности, находим такие относительные величины интенсивности как производительность труда и плотность населения. Разновидностью показателей интенсивности являются показатели экономического развития, такие как душевой доход, производство и потребление различных видов продукции на душу населения и др. Для характеристики изменения явления во времени применяют относительные показатели динамики (темпы). Их вычисляют путем сравнения величины текущего периода к величине одного из прошлых периодов. Если база сравнения постоянная, то темпы динамики базисные, а если переменная, то цепные. Примером расчета базисных и цепных относительных величин динамики является табл. 3. Таблица 3 - Динамика фонда оплаты труда на строительном предприятии
Из таблицы видно, что фонд оплаты труда на предприятии за пять месяцев увеличился на 59% или в 1, 59 раза. Цепные темпы показывают, что в каждом месяце по сравнению с предыдущим происходило увеличение фонда оплаты труда. Резкое увеличение фонда заработной платы на 47% произошло в феврале по сравнению с январем. Относительные показатели сравнения представляют собой отношение одноименных величин, характеризующих разные объекты. Так, например, можно сравнить урожайность зерновых культур, среднюю заработную плату, объем промышленной продукции по странам, отдельным регионам и областям. В качестве примера приведем таблицу 4, которая показывает, во сколько раз средняя заработная плата промышленно-производственного персонала в топливной промышленности превышала среднюю заработную плату в других отраслях. Таблица 4 - Среднемесячная заработная плата промышленно-производственного персонала в некоторых отраслях промышленности в 1995 г. *
Средние величины Статистика изучает массовые явления и процессы. Каждое из таких явлений обладает общими для всей совокупности и индивидуальными свойствами. Различие между индивидуальными свойствами называется вариацией, а присущая массовым явлениям близость (похожесть) характеристик отдельных явлений определяется средними величинами. Наиболее распространенным видом средних является средняя арифметическая, которая, и все средние, в зависимости от характера имеющихся данных может быть простой или взвешенной. Средняя арифметическая простая. Эта форма применяется в тех случаях, когда расчет осуществляется по несгруппированным данным. Предположим, пять торговых центров фирмы имеют следующий объем товарооборота за месяц:
Для того, чтобы определить средний месячный товарооборот (СМТ) в расчете на один торговый центр необходимо воспользоваться следующим исходным соотношением:
Исходя из этого получим рабочую формулу данной средней:
, (5)
где индивидуальные значения признака, которые называют вариантами, число единиц совокупности. С учетом имеющихся исходных данных получим:
В этом примере мы использовали формулу средней арифметической простой (невзвешенной). Средняя арифметическая взвешенная. При расчете средних величин отдельные значения осредняемого признака могут повторяться, встречаться по несколько раз. В подобных случаях расчет средней производится по сгруппированным данным или вариационным рядам, которые могут быть дискретными и интервальными. Рассмотрим следующий условный пример: Таблица 5 Результаты торгов акциями АО
Определим по данному дискретному вариационному ряду средний курс продажи одной акции (СКА), что можно сделать, только используя следующее исходное соотношение:
Чтобы получить общую сумму сделок, необходимо по каждой сделке курс продажи умножить на количество проданных акций и полученные произведения сложить. В конечном итоге мы будем иметь следующий результат:
Таким образом расчет среднего курса продажи произведен по формуле средней арифметической взвешенной: , (6) где варианты; веса или частоты (т.е. число вариант, имеющих одинаковое значение признака). При расчета средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. Рассмотрим следующий пример (табл.6): Таблица 6
Распределение предприятий отрасли по объему годовой прибыли
Для определения средней прибыли в расчете на одно предприятие найдем середины интервалов. Середины интервалов будут следующие: 15, 25, 35, 50, 70, 90. Используя среднюю арифметическую взвешенную, определим среднюю прибыль предприятий отрасли:
В статистических исследованиях используются и другие виды средних. Рассмотрим их.
Средняя гармоническая - это величина, обратная средней арифметической, из обратных значений признака. Ее применяют тогда, когда веса приходится не умножать, а делить на варианты или умножать на обратное их значение. Формулы средней гармонической простой и взвешенной имеют вид: , (7) , (8) где число единиц совокупности, варианты, . Расчет средней гармонической простой поясним на примере. Таблица 6 - Стоимость продукции и ее выработка в рабочих бригадах
Варьирующим признаком в данном примере является средняя выработка рабочих в каждой бригаде. Среднее значение данного варьирующего признака равно 2, 4 тыс. руб. Эта средняя получается как средняя гармоническая, где веса деленные на варианты показывают численность рабочих в бригадах, т.е. Средняя геометрическая. Еще одной формулой, по которой может осуществляться расчет среднего показателя, является средняя геометрическая. Сначала обратимся к формуле невзвешенной средней геометрической. Она выглядит следующим образом:
. (9) Соответственно средняя геометрическая взвешенная приобретает следующее выражение:
. (10)
Средняя квадратическая. В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных единицах измерения. Тогда применяется средняя квадратическая (например для вычисления средних диаметров труб, стволов). Средняя квадратическая простая рассчитывается по выражению
(11) Средняя квадратическая взвешенная вычисляется по формуле: (12) Средняя квадратическая используется для анализа вариации признака. Наиболее широкое применение средняя геометрическая для определения средних темпов изменения в рядах динамики. В экономических исследованиях наиболее часто применяются средне арифметически и средне гармонически величины. Показатели вариации Исследование вариации в статистике и социально - экономических исследованиях имеет важное значение, так как величина вариации признака статистической совокупности характеризует её однородность. В статистической практике для изучения и измерения вариации используются различные показатели (меры) вариации в зависимости от поставленных перед исследователем задач. К ним относится размах вариации, среднее линейное отклонение, средний квадрат отклонений (дисперсия), среднее квадратическое отклонение и коэффициент вариации. Способ вычисления показателей вариации. Размах вариации (R) является наиболее простым измерителем вариации признака. , (19) где - наибольшее значение варьирующего признака; Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 634; Нарушение авторского права страницы