Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ГЛАВА 5. СТАТИСТИЧЕСКИЕ РАСПРЕДЕЛЕНИЯ И ИХ ОСНОВНЫЕ ХАРАКТЕРИСТИКИ
Абсолютные статистические величины
В результате сводки статистических данных получают обобщающие статистические показатели, в которых отражаются результаты познания количественной стороны массовых общественных явлений. Исходной, первичной формой выражения статистических показателей, отражающих уровень развития явления, служат абсолютные величины. Абсолютными в статистике называются суммарные обобщающие показатели, характеризующие размеры (уровни, объемы) общественных явлений в конкретных условиях места и времени. Они характеризуют экономическую мощь страны и социальную жизнь населения (ВВП, ВНП, ВНД, реальные располагаемые денежные доходы населения, объем промышленного и сельскохозяйственного производства, объем выпуска важнейших видов продукции). Различают два вида абсолютных величин: индивидуальные и суммарные. Индивидуальными называют абсолютные величины, характеризующие размеры признака у отдельных единиц совокупности (например, размер заработной платы отдельного работника, вклад гражданина в определенном банке и т. д.). Они получаются непосредственно в процессе статистического наблюдения и фиксируются в первичных учетных документах. В отличие от индивидуальных суммарные абсолютные величины характеризуют итоговую величину признака по определенной совокупности объектов, охваченных статистическим наблюдением. Например, если индивидуальными будут показатели численности работающих на отдельных предприятиях, то суммарными – численности работающих по группам, объединениям предприятий. С позиции отдельного предприятия численность занятых на нем будет суммарной абсолютной величиной, а численности работающих в каждом цехе – величинами индивидуальными. Абсолютные статистические величины представляют собой именованные числа, т. е. имеют какую – либо единицу измерения. В зависимости от сущности исследуемого социально – экономического явления абсолютные статистические величины выражаются в натуральных, стоимостных и трудовых единицах измерения. Абсолютные статистические величины могут быть как положительными (доходы), так и отрицательными (убытки, потери). Натуральные единицы измерения, в свою очередь, могут быть простыми (тонны, штуки, метры, литры) и сложными, являющимися комбинацией нескольких разноименных величин (например, грузооборот железнодорожного транспорта выражается в тонно – километрах, производство электроэнергии – в киловатт – часах, затраты труда – в человеко – часах, человеко – днях). Стоимостные единицы измерения используются, например, для выражения объема разнородной продукции денежной форме – рублях. В стоимостных единицах выражают валовой выпуск продукции, доходы населения и др. В трудовых единицах измерения учитываются общие затраты труда на предприятии, трудоемкость отдельных операций технологического цикла. Относительные показатели Относительные показатели получают в результате сравнения двух показателей. Знаменатель отношения, т.е. та величина, с которой сравнивают другую, называется основанием или базой сравнения. Если основание единица, то относительная величина - коэффициент, если основание 100, то относительная величина - процент, если основание - 1000, то относительная величина измеряется в промилле. Различают следующие виды относительных величин: относительные величины планового задания, выполнения плана, структуры, координации, интенсивности, уровня экономического развития, динамики и сравнения. Относительные показатели планового задания представляют собой отношение величины показателя, который определен на планируемый период, к величине, принятой за базу сравнения. Относительные показатели выполнения плана дают количественную характеристику выполнения плановых заданий и выражаются в процентах. Исчисляют эту относительную величину по формуле: Относительные показатели структуры представляют собой соотношение размеров частей и целого и выражаются в долях единицы (коэффициентах) и процентах. Пример расчета относительных величин структуры показан в табл.2. Таблица 2 - Структура промышленно-производственного персонала фирмы
Как показывает табл.2, в отчетном периоде в фирме увеличилась доля рабочих и в два раза снизилась доля руководителей и специалистов. Такого рода изменения называют структурными сдвигами. Относительные показатели координации можно рассчитать, если базой сравнения является не общий итог, а какая-то одна часть совокупности, по отношению к которой определяются доли других частей совокупности. Относительные величины координации численности рабочих с руководителями, специалистами и служащими по данным табл.2, показывают, что в базисном периоде на 100 рабочих фирмы приходилось 74 человек руководителей, специалистов и служащих (64: 86 х 100), а в отчетном уже 67 человек (44: 66 х 100). Относительные показатели интенсивности получают путем сравнения объемов разных совокупностей, находящихся в определенной связи друг с другом. Например, выпуск товарной продукции и численность, территория и население. Сравнивая эти совокупности, находим такие относительные величины интенсивности как производительность труда и плотность населения. Разновидностью показателей интенсивности являются показатели экономического развития, такие как душевой доход, производство и потребление различных видов продукции на душу населения и др. Для характеристики изменения явления во времени применяют относительные показатели динамики (темпы). Их вычисляют путем сравнения величины текущего периода к величине одного из прошлых периодов. Если база сравнения постоянная, то темпы динамики базисные, а если переменная, то цепные. Примером расчета базисных и цепных относительных величин динамики является табл. 3. Таблица 3 - Динамика фонда оплаты труда на строительном предприятии
Из таблицы видно, что фонд оплаты труда на предприятии за пять месяцев увеличился на 59% или в 1, 59 раза. Цепные темпы показывают, что в каждом месяце по сравнению с предыдущим происходило увеличение фонда оплаты труда. Резкое увеличение фонда заработной платы на 47% произошло в феврале по сравнению с январем. Относительные показатели сравнения представляют собой отношение одноименных величин, характеризующих разные объекты. Так, например, можно сравнить урожайность зерновых культур, среднюю заработную плату, объем промышленной продукции по странам, отдельным регионам и областям. В качестве примера приведем таблицу 4, которая показывает, во сколько раз средняя заработная плата промышленно-производственного персонала в топливной промышленности превышала среднюю заработную плату в других отраслях. Таблица 4 - Среднемесячная заработная плата промышленно-производственного персонала в некоторых отраслях промышленности в 1995 г. *
Средние величины Статистика изучает массовые явления и процессы. Каждое из таких явлений обладает общими для всей совокупности и индивидуальными свойствами. Различие между индивидуальными свойствами называется вариацией, а присущая массовым явлениям близость (похожесть) характеристик отдельных явлений определяется средними величинами. Наиболее распространенным видом средних является средняя арифметическая, которая, и все средние, в зависимости от характера имеющихся данных может быть простой или взвешенной. Средняя арифметическая простая. Эта форма применяется в тех случаях, когда расчет осуществляется по несгруппированным данным. Предположим, пять торговых центров фирмы имеют следующий объем товарооборота за месяц:
Для того, чтобы определить средний месячный товарооборот (СМТ) в расчете на один торговый центр необходимо воспользоваться следующим исходным соотношением:
Исходя из этого получим рабочую формулу данной средней:
, (5)
где индивидуальные значения признака, которые называют вариантами, число единиц совокупности. С учетом имеющихся исходных данных получим:
В этом примере мы использовали формулу средней арифметической простой (невзвешенной). Средняя арифметическая взвешенная. При расчете средних величин отдельные значения осредняемого признака могут повторяться, встречаться по несколько раз. В подобных случаях расчет средней производится по сгруппированным данным или вариационным рядам, которые могут быть дискретными и интервальными. Рассмотрим следующий условный пример: Таблица 5 Результаты торгов акциями АО
Определим по данному дискретному вариационному ряду средний курс продажи одной акции (СКА), что можно сделать, только используя следующее исходное соотношение:
Чтобы получить общую сумму сделок, необходимо по каждой сделке курс продажи умножить на количество проданных акций и полученные произведения сложить. В конечном итоге мы будем иметь следующий результат:
Таким образом расчет среднего курса продажи произведен по формуле средней арифметической взвешенной: , (6) где варианты; веса или частоты (т.е. число вариант, имеющих одинаковое значение признака). При расчета средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. Рассмотрим следующий пример (табл.6): Таблица 6
Распределение предприятий отрасли по объему годовой прибыли
Для определения средней прибыли в расчете на одно предприятие найдем середины интервалов. Середины интервалов будут следующие: 15, 25, 35, 50, 70, 90. Используя среднюю арифметическую взвешенную, определим среднюю прибыль предприятий отрасли:
В статистических исследованиях используются и другие виды средних. Рассмотрим их.
Средняя гармоническая - это величина, обратная средней арифметической, из обратных значений признака. Ее применяют тогда, когда веса приходится не умножать, а делить на варианты или умножать на обратное их значение. Формулы средней гармонической простой и взвешенной имеют вид: , (7) , (8) где число единиц совокупности, варианты, . Расчет средней гармонической простой поясним на примере. Таблица 6 - Стоимость продукции и ее выработка в рабочих бригадах
Варьирующим признаком в данном примере является средняя выработка рабочих в каждой бригаде. Среднее значение данного варьирующего признака равно 2, 4 тыс. руб. Эта средняя получается как средняя гармоническая, где веса деленные на варианты показывают численность рабочих в бригадах, т.е. Средняя геометрическая. Еще одной формулой, по которой может осуществляться расчет среднего показателя, является средняя геометрическая. Сначала обратимся к формуле невзвешенной средней геометрической. Она выглядит следующим образом:
. (9) Соответственно средняя геометрическая взвешенная приобретает следующее выражение:
. (10)
Средняя квадратическая. В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных единицах измерения. Тогда применяется средняя квадратическая (например для вычисления средних диаметров труб, стволов). Средняя квадратическая простая рассчитывается по выражению
(11) Средняя квадратическая взвешенная вычисляется по формуле: (12) Средняя квадратическая используется для анализа вариации признака. Наиболее широкое применение средняя геометрическая для определения средних темпов изменения в рядах динамики. В экономических исследованиях наиболее часто применяются средне арифметически и средне гармонически величины. Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 698; Нарушение авторского права страницы