![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Обтекание тел идеальной и вязкой жидкостью. Парадокс Деламбера. Лобовое сопротивление. Сила лобового сопротивления при больших и малых числах Рейнолдса.
Тело в потоке вязкой жидкости. Лобовое сопротивление.Поток реальной жидкости или газа действует с некоторой силой на тело, помещенное в этот поток. Для осесимметричного тела с осью симметрии, направленной вдоль потока, эта сила также будет направлена вдоль потока. Она получила название силы лобового сопротивления.Основные физические причины возникновения лобового сопротивления можно установить наиболее просто, если рассмотреть обтекание потоком шара радиуса r. На рис. 4.21. изображена зависимость силы лобового сопротивления от числа Рейнольдса. При малых скоростях течения, когда Re< 102 F||~v, т. к. на шар действуют силы вязкости, возникающие вследствие существования тонкого пограничного слоя вблизи поверхности шара (d@r/(Re)1/2). При таких скоростях происходит ламинарное (слоистое) течение жидкости. Вне этого слоя реаль ная жидкость течет так же, как и идеальная, обтекая шар симметрично. Наоборот, при числах Re ~ 1 говорить о пограничном слое некорректно, т.к. градиенты скорости существенны в области, размеры которой значительно больше радиуса шара. При малых числах Рейнольдса сила лобового сопротивления для шара подчиняется закону Стокса: F||=6pmrv. При Re> 102, симметрия обтекания нарушается — позади шара происходит отрыв линий тока (рис. 4.22). При таких скоростях пограничный слой становится очень тонким, а поперечные градиенты скорости в нем — большими. Силы вязкости, которые при этом возрастают, тормозят движение частиц среды, движущихся вдоль поверхности шара, настолько, что они не в состоянии полностью обогнуть шар. Хотя течение в тонком пограничном слое остается ламинарным, позади шара образуются вихри. Симметрия давлений в точках А и A’ нарушается. F||=CX Srv2/2, где CX — коэффициент лобового сопротивления для тела данной формы. Область квадратичной зависимости силы F от скорости v простирается вплоть до чисел Рейнольдса Re~105. При больших скоростях пограничный слой постепенно турбулизуется, и при Re=3 105 он полностью турбулентен. Для ламинарного и турбулентного обтекания тел можно использовать единую формулу для расчета силы лобового сопротивления: F||=CX(Re)Srv2/2, в которой коэффициент лобового сопротивления должен
зависеть от скорости так, как это изображено на рис. 4.23.
Популярное:
|
Последнее изменение этой страницы: 2016-08-31; Просмотров: 710; Нарушение авторского права страницы