Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Обработка экспериментального графика



Методом наименьших квадратов

Зависимость измеряемой величины у от условий опыта х может быть найдена графически, если нанести значения х и у на миллиметровую бумагу и построить плавную кривую так, чтобы точки равномерно распределились по обе стороны кривой

(рис. 1). Задача состоит в том, чтобы по результатам опытов построить такую кривую у = f(x), относительно которой разброс (отклонения) экспериментальных точек был бы минимальным.

Tеория вероятности показывает, что наилучшее приближение к истинной зависимости у = f(x) дает кривая, построенная методом наименьших квадратов. В этом случае сумма квадратов отклонений экспериментальных значений уi от кривой у = f(x) будет минимальна. Отсюда и происходит название данного метода обработки результатов эксперимента.

1. Рассмотрим применение метода наименьших квадратов для случая, когда между измеряемыми величинами хиу существует линейная зависимость

. (1)

 

Рис. 1. Метод наименьших квадратов

 

 

Пусть в результате эксперимента получено п различных значений величины уi, соответствующих различным значениям величины хi. Найдем коэффициент b, при котором экспериментальные точки уi будут иметь наименьшие отклонения Δ уi относительно прямой.

Отклонение каждого значения уi от прямой у = bх будет

. (2)

Составим сумму квадратов отклонений:

(3)

Отклонение (разброс) измеренных значений уi от функции у = f(x) будет минимальным, если

(4)

Дифференцирование (3) по переменной b (предположив, что все остальные величины постоянны) с учетом (4) дает

или (5)

Отсюда определяем искомый коэффициент b.

(6)

2. В случае линейной зависимости между величинами х и у, которая аппроксимируется прямой, не проходящей через начало координат,

y = a + bx, (7)

 

коэффициенты а и b могут быть вычислены по формулам

 

       
   
 


(8)

 

Пример: предположим, что мы провели эксперимент и получили данные, которые занесли в табл. 1.

 

Таблица 1

Номер измерения i
xi 1, 0 1, 9 3, 1 4, 0 4, 9  
yi 1, 6 2, 5 3, 0 3, 7 4, 6

Для упрощения расчетов составим вспомогательную таблицу и заполним ее.

 

 

Таблица 2

Номер измерения i xi yi xi уi xi2
1, 0 1, 6 1, 6 1, 0
1, 9 2, 5 4, 75 3, 61
3, 1 3, 0 9, 3 9, 61
4, 0 3, 7 14, 8 16, 0
4, 9 4, 6 22, 54 24, 01
Σ 14, 9 15, 4 52, 99 54, 23

 

Рассчитаем коэффициенты а и b

     
 
 
 

 


Таким образом, уравнение прямой будет выглядеть следующим образом: у = 0, 928 + 0, 722 х .

Для построения отрезка прямой линии найдем две точки,

у1= 0, 928. Вторую точку получим, подставив в уравнение прямой значение х, равное, например, 5.

у2 = 0, 928 + 0, 722 5 = 4, 538.

На листе миллиметровой бумаги проведем оси координат, причем ось у проведем вертикально, а ось х – горизонтально.

 

 

Рис. 2

Выберем и нанесем на оси координат масштаб так, чтобы наши экспериментальные точки располагались на графике наилучшим образом – занимали на графике максимальную площадь. Нанесем на график экспериментальные точки и две точки у1и у2, рассчитанные нами (рис. 2). Для обозначения экспериментальных и «теоретических» точек используем разные обозначения (кружки, крестики, треугольники и т. п.).

Через две «теоретических» точки проведем отрезок прямой линии. При правильных расчетах линия пройдет на графике наилучшим образом, так, что экспериментальные точки будут располагаться справа и слева от прямой. Все построения желательно делать карандашом.

 

Список рекомендуемой литературы

1. Братухин Ю. К. Обработка результатов измерений: учеб. пособие / Ю.К.Братухин, Г.Ф.Путин, – Пермь.: Изд-во Перм. гос. ун-та, 1988.– 44 с.

2. Колесниченко В.И. Обработка и представление результатов эксперимента. / В.И.Колесниченко – Пермь; – Перм.. гос. техн. ун-т, 2000. – 74 с.

 

3. Сборник методических рекомендаций к лабораторным работам по физике. 1. Механика: учеб.пособие / под ред. В.М. Коровина, – Перм. гос. ун-т. – Пермь, 1997.- 87 с.

4. Зайдель А.Н. Ошибки измерений физических величин: учеб. пособие / А.Н.Зайдель. – Л.: Наука, 1985.– 108 с.

5. Общий физический практикум. Механика / Под ред. А.Н. Матвеева, Д.Ф. Киселева. – М.: Изд-во МГУ, 1991.– 272 с.

6. Савельев И. В. Курс физики. Т. 1. Механика: учеб. пособие / И.В. Савельев. – М.: Наука, 1989.– 496с.

7. Сивухин Д.В. Общий курс физики. Т.1.: учеб. пособие / Д.В.Сивухин. – М.: Наука, 1989.– 576 с.

8. Общая физика. Ч.2. Молекулярная физика и термодинамика: учеб. пособие / под ред. Ю.Л. Райхера, Перм. политехн. ин-т. – Пермь, 1998. – 81с.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-31; Просмотров: 464; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь