Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Понятие о методе молекулярных орбиталей



Для описания химической связи используются два подхода. Один из них – это теория молекулярных орбиталей (МО), другой теория валентных связей (ВС). В развитии теории ВС основополагающую роль сыграли работы Гейтлера, Лондона, Слетера, Полинга, а в развитии теории МО – работы Малликена и Гунда.

В теории МО молекула рассматривается как совокупность положительно заряженных ядер и отрицательно заряженных электронов, каждый из которых движется в поле остальных электронов и всех ядер. Каждая молекула имеет свою молекулярную орбиталь. Молекулярная орбиталь – есть комбинация атомных орбиталей. Известно, что электрон находится в связывающей или разрыхляющей областях молекулы. Поэтому различают связывающие и разрыхляющие молекулярные орбитали. В связывающей молекулярной орбитали электронная плотность концентрируется между ядрами, в разрыхляющей молекулярной орбитали за ядрами. Для упрощения рассмотрим образование молекулярных орбиталей двухатомной молекулы. При сближении двух изолированных атомов их атомные орбитали перекрываются. Из каждых двух перекрывающихся атомных орбиталей образуются две молекулярные орбитали: одна связывающая и одна разрыхляющая. Если орбитали атомов А и В, образующих молекулу АВ, обозначить через ψ А и ψ В, то их возможные комбинации имеют вид

ψ + = с1ψ А + с2ψ В; ψ - = с3ψ А – с4ψ В (5).

Здесь коэффициенты сi обозначают долю участия, соответствующих атомных орбиталей в формировании молекулярных; ψ + - связывающая, а ψ - - разрыхляющая молекулярные орбитали.

Если коэффициент сi близок к нулю, то это означает, что пребывание электрона в области, описываемой данной АО маловероятно.

Представление молекулярной орбитали в виде линейной комбинации атомных орбиталей (ЛКАО) получило название приближения МО ЛКАО. В приближении МО ЛКАО всегда образуется столько молекулярных орбиталей, сколько было исходных АО электронов всех ядер. Таким образом, количество молекулярных орбиталей равно суммарному количеству атомных орбиталей. Например, для молекулы Н2 общее количество АО равно двум, поэтому образуются только две МО. В случае молекулы О2 необходимо рассматривать 10 МО, так как в их образовании участвуют 1s-, 2s-, 2px-, 2py-, 2pz- атомных орбиталей, всего по 5 АО от каждого атома.

Молекулярные орбитали обозначают греческими буквами (π, σ ), причем со звездочкой для разрыхляющей орбитали (π *, σ *). Молекулярные орбитали, образованные перекрыванием атомных орбиталей по оси расположения атомных ядер, называются σ -орбиталями. Данные МО являются симметричными относительно вращения вокруг межъядерной оси.

π -орбитали – это МО, антисимметричные относительно вращения вокруг межъядерной оси. МО π –симметрии образуются при особом перекрывании p-, d-, f- АО.

δ –орбитали – это МО, антисимметричные относительно отражения в двух взаимно перпендикулярных плоскостях, проходящих через межъядерную ось. Данные орбитали образуются при особом перекрывании d- и f- АО.

Энергия σ -, π -, δ - орбиталей уменьшается в следующей последовательности

σ > π > δ.

Образование МО из АО изображают в виде энергетической диаграммы (рис. 17), где по вертикали откладывают значения энергии Е орбиталей. Слева и справа на диаграмме приводят энергетические уровни атомных орбиталей, в середине – уровни молекулярных орбиталей.

Связывающая молекулярная орбиталь характеризуется повышенной электронной плотностью в пространстве между ядрами, поэтому такая орбиталь энергетически более выгодна, чем атомные орбитали. Вследствие этого уровень энергии связывающей орбитали на диаграмме расположен ниже уровня исходных атомных орбиталей. На разрыхляющей орбитали электронная плотность концентрируется за ядрами и поэтому подобная орбиталь энергетически менее выгодна, чем исходные атомные орбитали. Энергетическое положение разрыхляющих орбиталей на диаграмме находится выше уровня исходных атомных орбиталей.

 

Рис. 17. Энергетическая диаграмма 1s - атомных и молекулярных

орбиталей двухатомной гомоядерной молекулы.

 

Переход электронов с атомных 1s-орбиталей на связывающую МО, приводящий к возникновению химической связи, сопровождается выделением энергии. Переход электронов с атомных 1s-орбиталей на разрыхляющую МО требует затрат энергии. Приближенно можно считать, что при переходе 1S-электрона на связывающую МО выделяется столько же энергии, сколько необходимо затратить для его перевода на разрыхляющую МО.

Положение исходной АО на шкале энергий определяется значением энергии ионизации атома, отвечающей удалению электрона, описываемого данной орбиталью, на бесконечно большое расстояние. Такая энергия ионизации называется орбитальной энергией ионизации. Для атома кислорода возможные типы ионизации определяются удалением электрона с 2p- и 2s- электронной подоболочки. Удаление 2p- электрона требует затраты энергии 13, 61 эВ, а удаление 2s-электрона – 28, 46 эВ. Поэтому 2р-AО кислорода на энергетических диаграммах отмечается уровнем энергии -13, 61 эВ, а 2s-АО – уровнем энергии -28, 46 эВ.

Положение МО на энергетических диаграммах определяется на основании квантово-химических расчетов электронной структуры молекул. Для сложных молекул число энергетических уровней МО на энергетических диаграммах велико. Однако часто необходимо знать энергии не всех молекулярных орбиталей, а только наиболее чувствительных к внешним воздействиям. Такими орбиталями являются МО, на которых размещены электроны самых высоких энергий. Эти электроны наиболее легко удаляются с данной МО, например, под действием излучения. Такая МО получила название высшая занятая молекулярная орбиталь (ВЗМО). Зная число молекулярных орбиталей, которое равно суммарному числу всех АО, и зная число электронов, можно легко определить порядковый номер ВЗМО и, соответственно, её энергию и состав. Кроме того, наиболее важной для изучения химических задач является низшая свободная молекулярная орбиталь (НСМО). Данная орбиталь является вакантной, и она следующая по очереди за ВЗМО на шкале энергий.

Лекция 4. Классификация и номенклатура неорганических соединений

Простые вещества и химические соединения. Оксиды: основные, кислотные и амфотерные. Номенклатура окси­дов. Зависимость кислотно-основного характера оксидов от положения в периодической системе и степени окис­ления элемента. Химическое взаимодействие между оксидами с образованием солей. Гидроксиды основные и амфотерные, кислоты. Их номенклатура и получение. Соли: нормальные, кислые и основные. Номенклатура солей. Получение и свойства солей.

Номенклатура и свойства комплексных соединений.

Неорганические соединения различают по составу (бинарные и многоэлементные) и функциональным признакам. К бинарным соединениям относят соединения элементов с кислородом (оксиды), галогенами (галогениды – фториды, хлориды, бромиды, иодиды), халькогенами (халькогениды – сульфиды, селениды, теллуриды), азотом (нитриды), фосфором (фосфиды), углеродом (карбиды), кремнием (силициды), а также соединения металлов друг с другом (интерметаллиды) и водородом (гидриды). Среди многоэлементных соединений выделяют гидроксиды (вещества, содержащие гидроксидные группы - ОН), производные гидроксидов – соли, а также комплексные соединения, гидраты и кристаллогидраты.

В соответствии с правилами ИЮПАК наименование любого вещества должно однозначно указывать на его состав. Поэтому в основу систематических.е. нование любого вещества должно однозначно указывать на его состав, поэтому в основу системаи соединений, нные соотношения названий неорганических веществ положены названия элементов, входящих в их состав.

Название бинарного соединения образуется из латинского корня наименования более электроотрицательного элемента с окончанием –ид и русского наименования менее электроотрицательного элемента в родительном падеже. При написании формулы вещества менее электроотрицательный элемент стоит левее. Например, Al2O3 – оксид алюминия, AgI – иодид серебра, OF2 – фторид кислорода. Для некоторых элементов корни их русских названий совпадают с корнями латинских, за исключением элементов, представленных ниже в таблице 1:

 

Таблица 1

Названия химических элементов

Символьная запись Русское название Латинское название
Ag Серебро Аргент-
As Мышьяк Арс-, арсен-
Au Золото Аур-
C Углерод Карб-, карбон-
Cu Медь Купр-
Fe Железо Ферр-
H Водород Гидр-, гидроген-
N Азот Нитр-
Ni Никель Никкол-
O Кислород Окс-, оксиген-
Pb Свинец Плюмб-
S Сера Сульф-, тио-
Sb Сурьма Стиб-
Si Кремний Сил-, силиц-, силик-
Hg Ртуть Меркур-
Mn Марганец Манган-
Sn Олово Станн-

 

Для обозначения количественного состава используют греческие числительные в качестве приставки, например, Hg2Cl2 – дихлорид диртути, СО – монооксид углерода, СО2 - диоксид углерода.

Числительные приставки имеют следующие названия:

1 - Моно- 5 - Пента- 9 - Нона-

2 - Ди- 6 - Гекса- 10 - Дека-

3 - Три- 7- Гепта- 11 - Ундека-

4 - Тетра- 8 - Окта- 12- Додека-.

Название многоэлементного соединения отражает его функциональные признаки, такие как принадлежность к гидроксидам или кислотам. Гидрооксиды – это соединения оксидов с водой. Их подразделяют на основные, проявляющие в химических реакциях свойства оснований, кислотные – проявляющие свойства кислот, амфотерные – способные проявлять как кислотные, так и основные свойства.

К классу оснований, согласно теории электролитической диссоциации, относят вещества, способные в водном растворе диссоциировать с образованием гидроксид-ионов ОН-: Наименование основного гидроксида (или основания) образовано из слова «гидроксид» и названия элемента в родительном падеже, после которого при необходимости указывают степень окисления элемента. Например, NaOH – гидроксид натрия, Fe(OH)2 – гидроксид железа (II) или дигидроксид железа. Общую формулу основания можно записать как М(ОН)m , где М – металл, m- число гидроксильных групп, или кислотность основания.

Вещества, способные диссоциировать в растворе с образованием ионов водорода Н+, в соответствии с теорией электролитической диссоциацией относят к классу кислот.

Кислоты в зависимости от наличия в их составе кислорода подразделяются на кислородсодержащие и на безкислородные. В общем случае формулу кислоты можно записать как НnА, где А – кислотный остаток, n – число атомов водорода в молекуле, или основность кислоты.

Систематическое название кислоты включает в себя наименование двух частей: электроположительной (атомы водорода) и электроотрицательной (кислотный остаток, анион). В названии аниона вначале указывают атомы кислорода (-оксо-), затем кислотообразующего элемента с добавлением суффикса -ат, далее в скобках абсолютную величину степени окисления этого элемента. Например, H2CO3 – триоксокарбонат (IY) водорода, Н2SO4 – тетраоксосульфат (VI) водорода. При наличии в анионе других атомов название аниона составляют из латинских корней названий соответствующих элементов и соединительной гласной -о- в порядке их размещения в формуле справа налево. Например, H2SO3 (O2) – пероксотриоксосульфат (VI) водорода, Н2SO3S – тиотриоксосульфат (VI) водорода. Систематические наименования наиболее употребительных кислот представлены в таблице 3.

Традиционное название состоит из двух слов – прилагательного, производного от корня названия кислотообразующего элемента, и слова «кислота», например, Н2SO4 – серная кислота, НNO3 – азотная кислота.

Амфотерные гидрооксиды способны диссоциировать в водных растворах как по типу оснований, так и по типу кислот, например,

При взаимодействии с кислотами они проявляют свойства оснований, а при взаимодействии с основаниями – свойства кислот. Их названия составляют по схеме, соответствующей основным гидроксидам.

Таблица 2

Названия важнейших кислот и их солей

 

Формула кислоты Названия
Кислоты Соли
HAlO2 Метаалюминиевая Метаалюминат
HAsO3 Метамышьяковая Метаарсенат
H3AsO4 Ортомышьяковая Ортоарсенат
HAsO2 Метамышьяковистая Метаарсенит
H3AsO3 Ортмышьяковистая Ортоарсенит
HBO2 Метаборная Метаборат
H3BO3 Ортоборная Ортоборат
H2B4O7 Четырёхборная Тетраборат
HBr Бромводород Бромид
HOBr Бромноватистая Гипобромит
HBrO3 Бромноватая Бромат
HCOOH Муравьиная Формиат
CH3COOH Уксусная Ацетат
HCN Циановодород Цианид
H2CO3 Угольная Карбонат
H2C2O4 Щавелевая Оксалат
HCl Хлороводород Хлорид
HOCl Хлорноватистая Гипохлорит
HClO2 Хлористая Хлорит
HClO3 Хлорноватая Хлорат
HClO4 Хлорная Перхлорат
HCrO2 Метахромистая Метахромит
H2CrO4 Хромовая Хромат
H2Cr2O7 Двухромовая Дихромат
HI Йодоводород Йодид
HOI Йодноватистая Гипойодит
HIO3 Йодноватая Йодат
HIO4 Йодная Перйодат
HMnO4 Марганцовая Перманганат
H2MnO4 Марганцовистая Манганат
H2MoO4 Молибденовая Молибдат
HN3 Азидоводород (азотистоводородная) Азид
HNO2 Азотистая Нитрит
HNO3 Азотная Нитрат
HPO3 Метафосфорная Метафосфат
H3PO4 Ортофосфорная Ортофосфат
H4P2O7 Двуфосфорная (пирофосфорная) Дифосфат (пирофосфат)
H3PO3 Фосфористая Фосфит
H3PO2 Фоснофорноватистая Гипофосфит
H2S Сероводород Сульфид
HSCN Родановодород Роданид
H2SO3 Сернистая Сульфит
H2SO4 Серная Сульфат
H2S2O3 Тиосерная Тиосульфат
H2S2O7 Двусерная (пиросерная) Дисульфат (пиросульфат)
H2S2O8 Пероксодвусерная (надсерная) Пероксидосульфат (персульфат)
H2Se Селеноводород Селенид
H2SeO3 Селенистая Селенит
H2SeO4 Селеновая Селенат
H2SiO3 Кремниевая Силикат
HVO3 Ванадиевая Ванадат
H2WO4 Вольфрамовая Вольфрамат
     
     
     

 

Соли представляют собой продукты замещения ионов водорода кислоты на металл или гидроксильных групп основания на кислотный остаток. В зависимости от полноты замещения атомов водорода или гидроксильных групп соли подразделяют на средние (или нормальные), например К2SO4, кислые (или гидросоли) например NaHCO3, и основные (или гидроксосоли) например FeOHCl. Различают также двойные соли, образованные двумя металлами и одним кислотным остатком (КАl(SO4)2), и смешанные соли, образованные одним металлом и двумя кислотными остатками (СаСlОСl). Названия солей обусловлены систематическими названиями соответствующих кислот, например, К2SO4 – тетраоксосульфат (VI) калия, NaHCO3 – триоксокарбонат (IY) водорода-натрия, FeOHCl или, точнее, FeClOH – гидрокси-хлорид железа (II).

При наличии числовых приставок (1, 2, ... ) в названии вещества для верного понимания формулы применяют умножение приставки (например, КАl3(SO4)2(OH)6 – гексагидроксид-бис(сульфат) триалюминия-калия). Названия приставок следующие:

1 Монокис- 5 Пентакис- 9 Нонакис-

2 Бис- 6 Гексакис- 10 Декакис-

3 Трис- 7 Гептакис- 11 Ундекасис-

4 Тетракис- 8 Октасис- 12 Додекакис-

Традиционные наименования солей также содержат названия анионов в именительном падеже и названия катионов в родительном падеже (см. табл. 2), например, К2SO4 – сульфат калия, NaHCO3 – гидрокарбонат натрия, FeOHCl – гидроксохлорид железа (II).

Оксиды в зависимости от характерных функций, выполняемых в химических реакциях, подразделяют на солеобразующие (среди них выделяют основные, кислотные и амфотерные) и несолеобразующие.

Основные оксиды образуют соли при взаимодействии с кислотами или кислотными оксидами. Им соответствуют основания, так как они их образуют при взаимодействии с водой, например СаО – Са(ОН)2.

Кислотные оксиды образуют соли при взаимодействии с основаниями или основными оксидами. Они могут быть получены путем отделения воды от соответствующей кислоты. Поэтому их называют также ангидридами кислот, например SO3 – ангидрид Н2SO4.

Амфотерные оксиды образуют соли как при взаимодействии с кислотами, так и при взаимодействии с основаниями, например, ZnO, Al2O3.

Гидраты и кристаллогидраты – соединения, содержащие в своем составе воду, например, NH3 ∙ Н2О ∙ Fe2O3, nH2O, СuSO4 ∙ 5Н2О. Как систематические, так и традиционные названия таких соединений начинаются со слова «гидрат» с соответствующей приставкой: NH3 ∙ Н2О – гидрат аммиака, Fe2O3 nH2O – полигидрат оксида железа (III), СuSO4 ∙ 5Н2О – пентагидрад тетраоксосульфата меди (II), или пентагидрад сульфата меди (II).

 

Лекция 5. Химическая термодинамика

Химическая термодинамика. Термодинамические системы. Термодинамические параметры. Термодинамический процесс. Внутренняя энергия, теплота, работа. Первый закон термодинамики. Энтальпия. Закон Гесса и следствия из него. Энтропия. Второе начало термодинамики. Свободная энергия Гиббса и свободная энергия Гельгмольца.

 

Химическая термодинамика.

Термодинамика изучает взаимное превращение теплоты, работы и различных видов энергии. Слово термодинамика происходит от греческих слов термос (тепло) и динамос (сила, мощь). Термин термодинамика был введён Томсоном в 1854 году, который употребил его как синоним понятий теплота и работа.

Термодинамика основывается на трёх фундаментальных принципах, которые называются началами термодинамики. Они являются обобщением многочисленных экспериментальных фактов.

Применение методов термодинамики к химическим реакциям и процессам обусловили появление химической термодинамики. Предметом изучения химической термодинамики является превращение энергии при химических взаимодействиях, которые происходят при протекании химических процессов.

Термодинамические системы. Термодинамические параметры. Термодинамический процесс.

Термодинамика использует ряд понятий и модельных представлений, таких как термодинамическая система, параметры состояния, энергия, теплота, работа. Перейдем к их рассмотрению.

Понятие система означает ту часть материального мира, которую мы исследуем. Например, химический стакан с водой, реактор на химическом предприятии. Остальная часть материального мира, за пределами условно выделенной системы – называется окружением.

Термодинамической системой – называется совокупность тел, которая фактически или мысленно может быть выделена из окружающей среды. Система отделена от окружения границей, через которую совершается материальный обмен - массообмен или (и) теплообмен. В зависимости от степени изолированности различают открытые, закрытые, изолированные системы.

Открытые системы – это системы, которые обмениваются с внешней средой веществом, механической работой, теплотой и излучением. Например, в пробирке смешивается карбонат натрия (сода) с раствором хлорводородной кислоты. В результате протекает реакция

Na2CO3 + HCl = NaCl + CO2↑ + H2O.

В рассматриваемом химическом процессе масса системы уменьшается, так как улетучивается диоксид углерода, и выделяется тепло, часть которого идёт на нагрев окружающего воздуха.

Закрытые системы – системы, которые не обмениваются с внешней средой веществом, но взаимодействуют с ней посредством механической работы, теплообмена и излучения. Примером закрытой системы является пробирка, в которой происходит смешение соды с хлорводородной кислотой, закрытая пробкой.

Изолированные системы – системы невзаимодействующие с внешней средой. Между изолированной системой и окружением не происходит никакого обмена ни веществом, ни энергией. На практике понятие абсолютно изолированных систем не существует, оно является абстрактным, мысленным построением. Примером приближенно изолированной системы является термос или сосуд Дьюара.

Система может находиться в том или ином состоянии. Состоянием системы называется совокупность физических и химических свойств, характеризующих систему.

Состояние термодинамической системы характеризуют параметры состояния: давление, объём, температура, концентрация.

Давление (Р) характеризует подвижность молекул и определяется силой, с которой газообразные частицы действуют на стенки сосуда. Давление измеряют в Па (Паскаль), атм (атмосфера), мм рт. ст. (миллиметры ртутного столба): 1 атм = 760 мм рт. ст. = 101325 Па.

Объём (V) характеризует часть пространства, занимаемого веществом. Измеряют объём в м3 (кубический метр), см3 (кубический сантиметр), л (литр), мл (миллилитр): 1 м3 = 1000 л; 1л = 1000 мл.

Температура (Т, t) характеризует степень нагретости системы и измеряется в К (шкала Кельвина) и 0С (шкала Цельсия). Для перевода температур, выраженных в разных шкалах, используют выражение

Т = t + 273 (1).

Концентрация вещества (с) определяет количественный состав раствора, смеси, расплава. Например, молярная концентрация – количество молей вещества в 1 л раствора или смеси, обозначается через моль/л.

Таким образом, набор параметров (р, V, Т) называется состоянием системы, так как считается, что он полностью определяет состояние. Термодинамические параметры являются макроскопическими величинами, измеряемыми в опыте. Они являются функциями состояния, то есть их изменение определяется только начальным и конечным состояниями и не зависит от пути процесса, в результате которого произошло это изменение

∆ Т = Ткон – Тнач = Т2 – Т1 (2).

Для бесконечно малых изменений можно записать

∆ Т = dT (3).

Если величина не является функцией состояния, а зависит от пути процесса, то она является функцией перехода. В этом случае бесконечно малое изменение величины А записывают в виде

∆ А = δ А (4).

Таким образом, знак ∆ - обозначает изменение величины, являющейся функцией состояния, знак δ – обозначает изменение величины, являющейся функцией перехода.

Термодинамические параметры не являются независимыми, а связаны уравнением состояния. Примером такого уравнения является уравнение состояния идеального газа, которое называется уравнением Менделеева-Клайперона

pV = nRT (5),

где n – число молей газа; R – газовая постоянная.

Состояние термодинамической системы может изменяться с течением времени. Обычно такое изменение фиксируется при измерении одного из термодинамических параметров. Поэтому в термодинамике используется понятие термодинамического процесса.

Термодинамическим процессом называется всякое изменение в системе, связанное с изменением хотя бы одного параметра. Таким образом, термодинамический процесс – это изменение состояния системы. Различают следующие процессы: изохорный (V = const), изобарный (p = const), изотермический (T = const), адиабатный (теплота Q = 0).

Термодинамические процессы бывают:

-обратимые, когда переход из одного состояния в другое и обратно может происходить по одному и тому же пути, и после возвращения в исходное состояние в окружающей среде не остаётся макроскопических изменений; примером обратимого процесса является сжатие и растяжение пружины;

-необратимые или неравновесные, когда параметры изменяются с конечной скоростью и переход из одного состояния в другое и обратно не может происходить по одному и тому же пути, в результате в окружающей среде остаются макроскопические изменения; примером необратимого процесса является пластическая деформация металлической проволоки.

Внутренняя энергия, теплота, работа.

Кроме термодинамических параметров немаловажную роль играют и другие термодинамические величины, такие как работа и теплота. Они являются количественной мерой термодинамических процессов и характеризуют участие системы в термодинамических процессах. Работа и теплота являются энергетическими характеристиками. Поэтому рассмотрим понятие энергии.

Энергия происходит от греческого слова «действие» - есть мера способности совершать работу. Энергия измеряется в Дж (Джоуль). Многочисленные наблюдения и опытные факты говорят о следующих свойствах энергии.

Энергия не исчезает и не возникает из ничего.

Энергия может существовать в разнообразных формах.

В изолированной системе энергия может переходить из одной формы в другую, но её количество остаётся постоянным.

Если система не изолирована, то её энергия может изменяться, но при одновременном изменении энергии внешней среды на точно такую же величину.

Любая система обладает определённым запасом энергии, то есть энергия неотъемлемое свойство системы.

Для рассмотрения химических процессов важны следующие формы энергии: солнечная, механическая, химическая, ядерная, электрическая.

Различают следующие виды энергии: кинетическую (энергия движения), потенциальную (энергия положения и взаимодействия) и внутреннюю энергию (энергию состояния).

Первый закон термодинамики

Внутренняя энергия системы – это сумма потенциальной энергии взаимодействия всех её частиц между собой и кинетической энергии их движения. Так как химическая система состоит из молекул, атомов, ионов, электронов и все эти частицы обладают энергией, то внутренняя энергия системы включает следующие составляющие: энергию колебательного, вращательного и поступательного движений молекул, ионов, атомов, электронов, энергию межмолекулярного, внутримолекулярного, внутриатомного и внутриядерного взаимодействия.

Таким образом, внутренняя энергия тела – это общий запас энергии тела за вычетом кинетической энергии тела в целом и потенциальной энергии его положения в пространстве.

Абсолютная величина внутренней энергии тела неизвестна, но опыт показывает, что важно знать только изменение внутренней энергии тела.

Внутренняя энергия системы – есть функция состояния. Её изменение определяется лишь начальным и конечным состоянием системы. Внутренняя энергия не зависит от пути процесса, следуя которому система перешла в данное состояние, а однозначно определяется самим состоянием. Обозначают внутреннюю энергию через U, а её изменение через ∆ U. Изменение ∆ U определяется как разность значений внутренней энергии в состояниях 1 и 2:

∆ U = U2 – U1 (6).

Как функция состояния внутренняя энергия может быть выражена через параметры состояния. Для простой системы внутренняя энергия может быть задана в виде функции двух параметров состояния

U = U(T, V) (7);

dU = (dU/dT)dT + (dU/dV)dV (8),

где dU – полный дифференциал внутренней энергии.

В этом отношении внутренняя энергия сходна с температурой, давлением, объёмом, которые также являются функциями состояния.

Поскольку внутренняя энергия зависит от массы, поэтому она является экстенсивной величиной, каковыми являются объём, масса, количество вещества.

Температура, давление и все удельные и молярные характеристики являются интенсивными величинами.

Все изменения внутренней энергии при её переходе от одной системы к другой можно разбить на две группы: передача теплоты и совершение работы.

Теплота

Теплотой называется форма непосредственной передачи энергии молекулами одной системы молекулам другой при их контакте. Переход энергии происходит за счёт хаотического столкновения молекул двух контактирующих систем. Известно, что частицы, находящиеся внутри тела или какой-нибудь выделенной системы, находятся в постоянном тепловом движении. Эта тепловая энергия представляет собой кинетическую энергию поступательного и вращательного движения молекул в системе или внутри тела, а также энергию колебаний атомов в молекуле. Мерой тепловой энергии является температура. Чем выше температура тела, тем большим запасом тепловой энергии оно располагает. При контакте тел с разной температурой запас тепловой энергии будет передаваться от тела с большей температурой телу с меньшей температурой. Мерой энергии, переданной таким способом в форме теплоты, является количество теплоты, которое обозначается через Q или q.

Работа

Работа – это форма перехода энергии, совершаемая при перемещении масс под действием механических сил. Общей мерой энергии, передаваемой таким способом, является величина, обозначаемая через А, которая определяется как произведение величины пути, прошедшего системой под действием силы, на величину этой силы и данная величина носит название работы.

В термодинамике принято следующее правило знаков: работа системы является положительной, если её совершает сама система, количество тепла является положительным, если тепло подводится к системе.

Рассмотрим работу, совершаемую газом при его расширении (на рисунке газ находится в верхней части) или сжатии (на рисунке газ находится в нижней части).

 

Рис. 1. Поршень, иллюстрирующий совершение работы при расширении

( сжатии) газа.

 

Из рис. 1 видно, что при давлении газа Р на поршень, площадью S, он совершает перемещение на расстояние dH. Так как при этом действует сила равная p∙ S, то при бесконечно малом перемещении, газ совершает элементарную работу равную

δ А = p∙ S∙ dH = pdV (9).

Работа, совершаемая системой при переходе из состояния 1 в состояние 2, будет определяться следующим выражением

А = = dV (10).

В начальном состоянии 1 объём системы был V1, в конечном состоянии 2 объём системы равен V2. Величина интеграла равна площади под кривой 1-2 (смотри рисунок). Как видно из рисунка величина работы зависит от пути процесса при переходе системы из состояния 1 в состояние 2. Поэтому о работе нельзя говорить, как о свойстве системы, системе нельзя приписать определенный запас работы. Работа является мерой изменения энергии при переходе системы из одного состояния в другое.

Работа и теплота зависят от способа перехода системы из одного состояния в другое, то есть работа и теплота являются функциями перехода и не являются функциями состояния.

 

Рис. 2. Определение работы расширения газа: заштрихованная

площадь под кривой 1-2 равна работе, которую совершает газ

при своём расширении.

 

Первое начало термодинамики

Теплота и работа являются качественно неравноценными формами передачи энергии. Это обусловлено тем, что в форме работы передается энергия упорядоченного движения, а в форме теплоты – энергия хаотичного движения. Передача энергии в форме работы может привести к изменению любого вида энергии системы, а в форме теплоты только внутренней энергии, то есть

δ А ≠ δ Q (11).

В результате многочисленных экспериментальных данных было установлено, что δ А и δ Q отличаются на одну ту же величину dU. Выражение вида

δ Q = δ А + dU (12)

называется первым законом (или) началом термодинамики.

Таким образом, взаимосвязь между внутренней энергией, теплотой и работой устанавливается на основе I начала термодинамики, которое имеет следующие равноценные формулировки:

1. В любой изолированной системе запас энергии остаётся постоянным.

2. Вечный двигатель I рода невозможен., то есть невозможно построить машину, которая бы производила механическую работу, не затрачивая на это соответствующего количества энергии.

Таким образом, I начало термодинамики есть одна из формулировок закона сохранения энергии. Закон сохранения утверждает, что энергия не создаётся и не уничтожается, но может превращаться из одной формы в другую.

3. Внутренняя энергия является функцией состояния, что можно записать в виде следующего выражения

δ Q = δ А + dU,

где δ Q и δ А – элементарное количество теплоты и работы соответственно, dU – полный дифференциал внутренней энергии.

Согласно данной формуле можно заключить, что полученная системой из вне теплота Q расходуется на приращение внутренней энергии ∆ U и на совершение системой работы А, то есть

Q = А + ∆ U (13).

В химии часто реакции проводят в закрытых реакторах, когда объём системы не изменяется, то есть V = const. В этом случае δ А = pdV = 0. Тогда из I начала термодинамики следует, что

δ QV = dU или ∆ QV = ∆ U (14).

Таким образом, тепловой эффект реакции протекающей при постоянном объёме равен изменению внутренней энергии системы.

Энтальпия. Закон Гесса.

В химии часто приходится иметь дело с процессами, протекающими при постоянном давлении. Например, химическая реакция, протекающая в открытой пробирке. В случае выделения газа в процессе такой реакции, давление в системе остается равным атмосферному и является соответственно постоянным.

При постоянном давлении и при условии, что в ходе процесса совершается только работа расширения, из I закона термодинамики следует

∆ QР = А + ∆ U = Р∆ V + ∆ U = (U2 + PV2) – (U1 + PV1).

Если ввести обозначение Н = U + PV, то получим

∆ QР = ∆ Н = Н2 – Н1 (15).

Величина Н называется энтальпией системы.


Поделиться:



Популярное:

  1. I. Понятие как форма мышления
  2. Административно-правовые нормы: понятие, структура, виды. Дискуссионность по понятию структуры правовой нормы.
  3. АДМИНИСТРАТИВНО-ЮРИСДИКЦИОННОЕ ПРОИЗВОДСТВО: ПОНЯТИЕ, ЧЕРТЫ, ВИДЫ.
  4. Административные запреты и ограничения в структуре правового статуса государственных гражданских служащих в Российской Федерации: понятие и содержательная характеристика.
  5. АДМИНИСТРАТИВНЫЙ НАДЗОР: ПОНЯТИЕ, ОСОБЕННОСТИ, МЕТОДЫ, СУБЪЕКТЫ, ПОЛНОМОЧИЯ.
  6. Акты применения права:понятие,признаки,виды.Н,П,А.и акты примен.права:сходство,различия.
  7. Аминоспирты 2-аминоэтанол(коламин), холин, ацетилхолин. Аминофенолы: дофамин, норадреналин,адренлин.Аминотиолы ( 2 аминоэтантиол). Понятие о биологич-ой роли
  8. Амнистия и помилования. Понятие. Их правовое значение. (Статьи 84 —85).
  9. Антикоррупционная экспертиза нормативных правовых актов: понятие и основания проведения. Субъекты проведения антикоррупционной экспертизы.
  10. Бюджетная классификация (понятие, принципы, виды). Бюджетный кодекс РФ.
  11. Бюджетные правоотношения: понятие и виды
  12. В неориентированном графе понятие дуга, путь, контур заменяются соответственно на ребро, цепь, цикл.


Последнее изменение этой страницы: 2017-03-08; Просмотров: 1835; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.119 с.)
Главная | Случайная страница | Обратная связь