Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вероятностно-статистические методы исследования и метод системного анализа



 

3.5.1. Вероятностно-статистический метод исследования.

Во многих случаях необходимо исследовать не только детерминированные, но и случайные вероятностные (статистические) процессы. Эти процессы рассматриваются на базе теории вероятностей.

Совокупность случайной величины х составляет первичный математический материал. Под совокупностью понимают множество однородных событий. Совокупность, содержащую самые различные варианты массового явления, называют генеральной совокупностью, или большой выборкой N. Обычно изучают лишь часть генеральной сово­купности, называемой выборной совокупностью или малой выборкой.

Вероятностью Р (х) события х называют отношение числа случаев N(x), которые приводят к наступлению события х, к общему числу воз­можных случаев N:

P(x)=N(x)/N.

Теория вероятностей рассматривает теоретические распределения случайных величин и их характеристики.

Математическая статистика занимается способами обработки и анализа эмпирических событий.

Эти две родственные науки составляют единую математическую теорию массовых случайных процессов, широко применяемую для ана­лиза научных исследований.

Очень часто применяют методы вероятностей и математической статистики в теории надежности, живучести и безопасности, которая широко используется в различных отраслях науки и техники.

3.5.2. Метод статистического моделирования или статистических испытаний (метод Монте-Карло).

Этот метод представляет собой численный метод решения сложных задач и основан на использовании случайных чисел, моделирующих вероятностные процессы. Результаты решения этим методом позволяют установить эмпирически зависимости исследуемых процессов.

Решение задач методом Монте-Карло эффективно лишь с исполь­зованием быстродействующих ЭВМ. Для решения задач методом Мон­те-Карло необходимо иметь статистический ряд, знать закон его распре­деления, среднее значение математическое ожидание т(х), средне­квадратичное отклонение.

С помощью этого метода можно получить сколь угодно заданную точность решения, т.е.

> т(х)

3.5.3. Метод системного анализа.

Под системным анализом понимают совокупность приемов и мето­дов для изучения сложных систем, представляющих собой сложную совокупность взаимодействующих между собой элементов. Взаимодей­ствие элементов системы характеризуется прямыми и обратными связя­ми.

Сущность системного анализа состоит в том, чтобы выявить эти связи и установить их влияние на поведение всей системы в целом. Наи­более полно и глубоко можно выполнить системный анализ методами кибернетики, которая представляет собой науку о сложных динамичных системах, способных воспринимать, хранить и перерабатывать инфор­мацию для целей оптимизации и управления.

Системный анализ складывается из четырех этапов.

Первый этап заключается в постановке задачи: определяют объект, цели и задачи исследования, а также критерии для изучения объекта и управления им.

Во время второго этапа определяют границы изучаемой сис­темы и определяют ее структуру. Все объекты и процессы, имеющие отношение к поставленной цели, разбивают на два класса ~ собственно изучаемую систему и внешнюю среду. Различают замкнутые и откры­тые системы. При исследовании замкнутых систем влиянием внешней среды на их поведение пренебрегают. Затем выделяют отдельные со­ставные части системы - ее элементы, устанавливают взаимодействие между ними и внешней средой.

Третий этап системного анализа заключается в составлении математической модели исследуемой системы. Вначале производят па­раметризацию системы, описывают основные элементы системы и эле­ментарные воздействия на нее с помощью тех или иных параметров. При этом различают параметры, характеризующие непрерывные и дис­кретные, детерминированные и вероятностные процессы. В зависимости от особенностей процессов используют тот или ной математический аппарат.

В результате третьего этапа системного анализа формируются за­конченные математические модели системы, описанные на формальном, например алгоритмическом, языке.

На четвертом этапе анализируют полученную математиче­скую модель, находят ее экстремальные условия в целях оптимизации процессов и управления системами и формулируют выводы. Оценку оптимизации производят по критерию оптимизации, принимающему в этом случае экстремальные значения (минимум, максимум, минимакс).

Обычно выбирают какой-либо один критерий, а для других уста­навливают пороговые предельно-допустимые значения. Иногда приме­няют смешанные критерии, представляющие собой функцию от первич­ных параметров.

На основании выбранного критерия оптимизации составляют зави­симость критерия оптимизации от параметров модели исследуемого объекта (процесса).

Известны различные математические методы оптимизации иссле­дуемых моделей: методы линейного, нелинейного или динамического программирования; методы вероятностно-статистические, основанные на теории массового обслуживания; теория игр, которая рассматривает развитие процессов как случайные ситуации.

Вопросы для самоконтроля знаний

- Методология теоретических исследований.

- Основные разделы этапа теоретических разработок научного исследования.

- Типы моделей и виды моделирования объекта исследования.

- Аналитические методы исследования.

- Аналитические методы исследования с использованием эксперимента.

- Вероятностно-аналитический метод исследования.

- Методы статического моделирования (метод Монте-Карло).

- Метод системного анализа.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-10; Просмотров: 2255; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь