Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация систем по степени организованности



Степень организованности системы

Организованность или упорядоченность организованности системы R оценивается по формуле

R=1-Эреал/Эмакс, (2.3)

где Эреал - реальное или текущее значение энтропии,

Эмакс - максимально возможная энтропия или неопределенность по структуре и функциям системы.

Если система полностью детерминированная и организованная то Эреал = 0 и R = 1. Снижение энтропии системы до нулевого значения означает полную «заорганизованность» системы и приводит к вырождению системы. Если система полностью дезорганизованная, то R=0 и Эреалмакс.

Качественная классификация систем по степени организованности была предложена В. В. Налимовым, который выделил класс хорошо организованных и класс плохо организованных, или диффузных систем. Позднее к этим классам был добавлен еще класс самоорганизующихся систем. Важно подчеркнуть, что наименование класса системы не является ее оценкой. В первую очередь, это можно рассматривать как подходы к отображению объекта или решаемой задачи, которые могут выбираться и зависимости от стадии познания объекта и возможности получения информации о нем.

 

Хорошо организованные системы

Если исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы и вид детерминированных (аналитических или графических) зависимостей, то возможно представление объекта в виде хорошо организованной системы. То есть представление объекта в виде хорошо организованной системы применяется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения (доказана адекватность модели реальному объекту).

Такое представление успешно применяется при моделировании технических и технологических систем. Хотя, строго говоря, даже простейшие математические соотношения, отображающие реальные ситуации, также не являются абсолютно адекватными, поскольку, например, при суммировании яблок не учитывается, что они не бывают абсолютно одинаковыми, а вес можно измерить только с некоторой точностью. Трудности возникают при работе со сложными объектами (биологическими, экономическими, социальными и др.). Без существенного упрощения их нельзя представить в виде хорошо организованных систем. Поэтому для отображения сложного объекта в виде хорошо организованной системы приходится выделять только факторы, существенные для конкретной цели исследования. Попытки применить модели хорошо организованных систем для представления сложных объектов практически часто нереализуемы, так как, в частности, не удается поставить эксперимент, доказывающий адекватность модели. Поэтому в большинстве случаев при представлении сложных объектов и проблем на начальных этапах исследования их отображают классами, рассмотренными ниже.

 

Плохо организованные (или диффузные) системы

Если не ставится задача определить все учитываемые компоненты и их связи с целями системы, то объект представляется в виде плохо организованной (или диффузной) системы. Для описания свойств таких систем можно рассматривать два подхода: выборочный и макропараметрический.

При выборочном подходе закономерности в системе выявляются на основе исследования не всего объекта или класса явлений, а путем изучения достаточно представительной (репрезентативной) выборки компонентов, характеризующих исследуемый объект или процесс. Выборка определяется с помощью некоторых правил. Полученные на основе такого исследования характеристики или закономерности распространяют на поведение системы в целом.

Пример. Если нас интересует средняя цена на хлеб в каком-либо городе, то можно было бы последовательно объехать или обзвонить все торговые точки города, что потребовало бы много времени и средств. А можно пойти другим путем: собрать информацию в небольшой (но репрезентативной) группе торговых точек, вычислить среднюю цену и обобщить ее на весь город.

При этом нельзя забывать, что полученные статистические закономерности справедливы для всей системы с какой-то вероятностью, которая оценивается с помощью специальных приемов, изучаемых математической статистикой.

При макропараметрическом подходе свойства системы оценивают с помощью некоторых интегральных характеристик (макропараметров).

Примеры:

1. При использовании газа для прикладных целей его свойства не определяют путем точного описания поведения каждой молекулы, а характеризуют макропараметрами — давлением, температурой и т.д. Основываясь на этих параметрах, разрабатывают приборы и устройства, использующие свойства газа, не исследуя при этом поведение каждой молекулы.

2. ООН при оценке уровня качества системы здравоохранения государства применяет в качестве одной из интегральных характеристик количество детей, умерших до пяти лет, на тысячу новорожденных.

Отображение объектов в виде диффузных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например ремонтных, цехах предприятия и в обслуживающих учреждениях, при исследовании документальных потоков информации и т.д.

 

Самоорганизующиеся системы

Класс самоорганизующихся, или развивающихся, систем характеризуется рядом признаков, особенностей, которые, как правило, обусловлены наличием в системе активных элементов, делающих систему целенаправленной. Отсюда вытекают особенности экономических систем, как самоорганизующихся систем, по сравнению с функционированием технических систем:

· нестационарность (изменчивость) отдельных параметров системы и стохастичность ее поведения;

· уникальность и непредсказуемость поведения системы в конкретных условиях. Благодаря наличию активных элементов системы появляется как бы " свобода воли", но в то же время возможности ее ограничены имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями;

· способность изменять свою структуру и формировать варианты поведения, сохраняя целостность и основные свойства (в технических и технологических системах изменение структуры, как правило, приводит к нарушению функционирования системы или даже к прекращению существования как таковой);

· способность противостоять энтропийным (разрушающим систему) тенденциям. В системах c активными элементами не выполняется закономерность возрастания энтропии и даже наблюдаются негэнтропийные тенденции, т. е. собственно самоорганизация;

· способность адаптироваться, к изменяющимся условиям. Это хорошо по отношению к возмущающим воздействиям и помехам, но плохо, когда адаптивность проявляется и к управляющим воздействиям, затрудняя управление системой;

· способность и стремление к целеобразованию;

· принципиальная неравновесность.

Легко видеть, что хотя часть этих особенностей характерна и для диффузных систем (стохастичность поведения, нестабильность отдельных параметров), однако в большинстве своем они являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование.

Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить для того, чтобы выбрать и создать требуемую степень их проявления.

При этом следует иметь в виду важное отличие открытых развивающихся систем с активными элементами от закрытых. Пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что, начиная с некоторого уровня сложности, систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью. По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось, и была осознана их основная особенность - принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем.

По этому поводу фон Нейманом была высказана следующая гипотеза: «У нас нет полной уверенности в том, что в области сложных задач реальный объект не может являться простейшим описанием самого себя, т. е. что всякая попытка описать его с помощью обычного словесного или формально-логического метода не приведет к чему-то более сложному, запутанному и трудновыполнимому...».

Необходимость сочетания формальных методов и методов качественного анализа и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Основную конструктивную идею моделирования при отображении объекта классом самоорганизующихся систем можно сформулировать следующим образом: накапливая информацию об объекте, фиксируя при этом все новые компоненты и связи и применяя их можно получать отображения последовательных состояний развивающейся системы, постепенно создавая все более адекватную модель реального, изучаемого или создаваемого объекта. При этом информация может поступать от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта).

Адекватность модели также доказывается как бы последовательно (по мере её формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей.

 

Открытые и закрытые системы

Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем – способность обмениваться со средой массой, энергией и информацией. В отличие от них закрытые или замкнутые системы предполагаются полностью лишенными этой способности, изолированными от среды.

Участники «общества по разработке ОТС» А. Холл и I'. Фейджин на основании собственного определения системы приводят такую классификацию систем: Если изменение в каждой отдельной части системы вызывает изменение всех других частей и в целой системе, то в этом случае система является целостной. Если изменение каждой части системы не вызывает изменение других частей, то система называется суммативной. Совершенно ясно, что благодаря такому разделению Холл и Фейджин получают возможность охватывать в своей теории значительно больший круг систем, чем Берталанфи.

Несмотря на то, что классификация систем Холла и Фейджина более детальна, чем классификация Берталанфи, а их определение системы более широко по сравнению с определением системой Берталанфи, тем не менее, эти модификации не вносят принципиальных изменений в существо «общей теории систем». И у Берталанфи, и у Холла — Фейджина речь идет о построении определенного математического аппарата, способного дать описание «поведения» достаточно обширного класса системных предметов.

Другие признаки

По однородности или разнообразию структурных элементов системы бывают гомогенные или однородные и гетерогенные или разнородные, а такжесмешанного типа. В гомогенных системах, например, в газах, жидкостях или в популяции организмов, структурные элементы системы однородны и поэтому взаимозаменяемы. Гетерогенные же системы состоят из разнородных элементов, не обладающих свойством взаимозаменяемости.

По равновесию системы делятся на равновесные или уравновешенные и неравновесные или неуравновешенные. В равновесных системах, если идут изменения одновременно в двух противоположных направлениях (противоположные процессы), то они взаимно компенсируются или нейтрализуются на некотором уровне. Каждое из возникающих изменений уравновешивается другим, ему противоположным, и система сохраняется в равновесном состоянии. Примером равновесных систем является организм, общество, экосистема и др. В неуравновешенных системах, наоборот, если идут изменения одновременно в двух противоположных направлениях, то одно из нихпреобладает, система преобразуется в эту сторону и равновесие нарушается. Однако это нарушение равновесия иногда может совершаться столь медленно, что система производит впечатление равновесной (ложное равновесие). Примером ложного равновесия является пламя.

Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбрать разные принципы классификации. При этом систему можно охарактеризовать одним или несколькими признаками:

· по виду научного направления — математические, физические, химические и т. п.;

· по виду формализованного аппарата представления системы — детерминированные и стохастические;

· по степени организованности —хорошо организованные, плохо организованные (диффузные), самоорганизующиеся системы.

· по обусловленности действия различают системы детерминированные и стохастические (вероятностные).

· по происхождению различают системы естественные, созданные в ходе естественной эволюции и в целом не подверженные влиянию человека (клетка), искусственные, созданные под воздействием человека, обусловленные его интересами и целями (машина) и виртуальные (воображаемые и, хотя они в действительности реально не существующие, но функционирующие так же, как и в случае, если бы они реально существовали).

· по основным элементам системы могут быть разделены на абстрактные, все элементы которых являются понятиями (языки, философские системы, системы счисления), и конкретные, в которых присутствуют материальные элементы.

· по взаимодействию со средой различают системы замкнутые и открытые. Большинство изучаемых систем являются открытыми, т.е. они испытывают воздействие среды и реагируют на него и, в свою очередь, оказывают воздействие на среду.

· по степени сложности различают простые, сложные и очень сложные системы.

· по естественному разделению системы делятся на: технические, биологические, социально-экономические.

· по описанию переменных системы: с качественными переменными (имеющие только лишь содержательное описание); с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные).

· по типу описания закона (законов) функционирования системы: типа “Черный ящик” (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения системы); не параметризованные (закон не описан, описываем с помощью хотя бы неизвестных параметров, известны лишь некоторые априорные свойства закона); параметризованные (закон известен с точностью до параметров и его возможно от ADE нести к некоторому классу зависимостей); типа “Белый (прозрачный) ящик” (полностью известен закон).

· По способу управления системой (в системе): управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально); управляемые изнутри (самоуправляемые или саморегулируемые - программно управляемые, регулируемые автоматически, адаптируемые - приспосабливаемые с помощью управляемых изменений состояний и самоорганизующиеся - изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов); с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).

Детерминированной называют систему, если ее поведение можно абсолютно точно предвидеть. Система, состояния которой зависит не только от контролируемых, но и от неконтролируемых воздействий или если в ней самой находится источник случайности, носит название стохастической. Приведем пример стохастических систем, это – заводы, аэропорты, сети и системы ЭВМ, магазины, предприятия бытового обслуживания и т.д.

Динамические системы характеризуются тем, что их выходные сигналы в данный момент времени определяются характером входных воздействий в прошлом и настоящем (зависит от предыстории). В противном случае системы называют статическими.

Примером динамических систем является биологические, экономические, социальные системы; такие искусственные системы как завод, предприятия, поточная линия и т.д.

Различают системы линейные и нелинейные. Для линейных систем реакция на сумму двух иди более различных воздействий эквивалентна сумме реакций на каждое возмущение в отдельности, для нелинейных – это не выполняется.

Если параметры систем изменяются во времени, то она называется нестационарной, противоположным понятием является понятие стационарной системы.

Пример нестационарных систем – это системы, где процессы, например, старения являются на данном интервале времени существенными.

Если вход и выход системы измеряется или изменяется во времени дискретно, через шаг, то система называется дискретной. Противоположным понятием является понятие непрерывной системы. Например: ЭВМ, электронные часы, электросчетчик – дискретные системы; песочные часы, солнечные часы, нагревательные приборы и т.д. – непрерывные системы.

Рис. 2.3 Классификация систем по их свойствам.

(Стрелки указывают возможный набор свойств системы)

 

В последнее время стали различать так называемые " жесткие" и «мягкие» системы, в основном, по используемым критериям рассмотрения.

Исследование «жестких» систем обычно опирается на категории: «проектирование», «оптимизация», «реализация», «функция цели» и другие. Для «мягких» систем используются чаще категории: «возможность», «желательность», «адаптируемость», «здравый смысл», «рациональность» и другие. Методы также различны: для «жестких» систем - методы оптимизации, теория вероятностей и математическая статистика, теория игр и другие; для «мягких» систем - многокритериальная оптимизация и принятие решений (часто в условиях неопределенности), метод Дельфи, теория катастроф, нечеткие множества и нечеткая логика, эвристическое программирование и др.

Для «переноса» знаний широко используются инварианты систем и изоморфизм систем. Важно при таком переносе не нарушать свойство эмерджентности системы.

Контрольные вопросы

 

1. Как классифицируются системы?

2. Какая система называется большой? сложной?

3. Чем определяется вычислительная (структурная, динамическая) сложность системы? Приведите примеры таких систем.

 


Тема 3

«Закономерности систем»

 

Рассматриваются общесистемные закономерности

 

Закономерности систем (в более полной формулировке – закономерности функционирования и развития систем) – общесистемные закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложны систем.

Если закон абсолютен и не допускает никаких исключений, то закономерность менее категорична.

Закономерностью называют часто наблюдаемое, типичное свойство (связь или зависимость), присущее объектам и процессам, которое устанавливается опытом.

Для нас наибольший интерес представляет общесистемная закономерность.

Общесистемные закономерности - это закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем.

Эти закономерности присущи любым системам, будь то экономическая, биологическая, общественная, техническая или другая система.

Такие закономерности Л. фон Берталанфи вначале называл системными параметрами или принципами, а А.Холл – макроскопическими закономерностями.

Одну из первых классификаций закономерностей предложил В. Г. Афанасьев. Он разделил закономерности на 4 группы:

1. Закономерности взаимодействия части и целого: целостность или эмерджентность, аддитивность, прогрессирующая систематизация, прогрессирующая факторизация, интегративность.

2. Закономерности иерархической упорядоченности: коммуникативность, иерархичность.

3. Закономерности осуществимости систем: закон «необходимого разнообразия» У. Эшби, эквифинальность, закономерность потенциальной эффективности Б. С. Флейшмана.

4. Закономерности развития систем: историчность, самоорганизация.

Использование закономерностей построения, функционирования и развития систем помогает уточнить представление об изучаемом или проектируемом объекте, позволяет разрабатывать рекомендации по совершенствованию организационных систем, методик системного анализа.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-11; Просмотров: 4071; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.054 с.)
Главная | Случайная страница | Обратная связь