Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Метод Монте-Карло для вычисления кратных интегралов.



Особенно эффективно применение метода Монте-Карло для вычисления кратных интегралов. Например, двойной интеграл по области в виде единичного квадрата может быть представлен в виде

где - это случайные числа, равномерно распределённые на интервале

При интегрировании по прямоугольнику R, не совпадающему с единичным квадратом, необходимо сначала произвести преобразование переменных.

 

 

 

Обобщим метод Монте-Карло на область произвольной конфигурации. Пусть требуется вычислить двойной интеграл по области произвольной конфигурации.

 

 

Построим прямоугольник R охватывающий область и введём функцию, совпадающую с области и равную нулю за пределами области .

Очевидно, что искомый интеграл

 

Точность зависит от качества генератора, не совсем точная (равномерная плотность распределения).

 

Тема №7

 

Решение обыкновенных дифференциальных уравнений (ОДУ).

 

К решению дифференциальных уравнений приводит большое число научно-исследовательских задач и задач инженерной практики, но лишь не многие из них удается решить аналитически, поэтому численные методы решения дифференциальных уравнений играют такую важную роль в инженерной практике.

Дифференциальные уравнения, содержащие одну независимую переменную и производные по ней, называются обыкновенными дифференциальными уравнениями.

Для решения дифференциального уравнения необходимо задание дополнительных условий, если дополнительные условия задаются при одном значении независимой переменной, то такие условия называются начальными, а задача решения уравнения называется задачей с начальными условиями или задача Коши.

Если условия задаются при двух или более значениях переменной, то такие условия называются граничными, а задачу называют краевой.

В задаче Коши роль независимой переменной играет величина (время), а дополнительное условие для начального момента времени ( ). В краевых задачах в качестве независимой переменной выступает координата отрезка, а граничные условия задаются в начале и конце отрезка.

Для решения задачи Коши и краевой принимают различные численные методы. Часто краевую задачу решают путем сведения её к задаче Коши. Отсюда следует, что обычно задачи Коши являются более легкими для численного решения.

При численном решении вводится шаг по координате, и решение находится в точках отстоящих друг от друга на величину шага. Для решения задачи Коши разработано множество методов, которые можно разделить на 2 группы:

1 группа – одношаговые методы.

В них для нахождения решения в следующей точке (удаленной на расстояние h) требуется информация лишь об одном предыдущем шаге.

2 группа – многошаговые методы.

Методы прогноза и коррекции.

В них для нахождения значения в следующей точке требуется информация из нескольких предыдущих точек.

При численном решении дифференциальных уравнений можно выделить 3 типа погрешности:

1) погрешность округления;

2) погрешность усечения, связана с аппроксимацией бесконечных рядов несколькими первыми членами, обусловлена численным методом;

3) погрешность распространения, она является результатом накопления погрешностей появившихся на предыдущих этапах счета.

 

Метод 28

Метод Эйлера.

Простейшим методом решения обыкновенного дифференциального уравнения первого порядка является метод Эйлера.

Требуется найти . Как зависит от .

Будем находить решение в точках отстоящих друг от друга на расстоянии h (шаг задачи). Допустим решение в точке известно, и требуется найти значение неизвестной в точке . Разложим решение в окрестности точки в ряд Тейлора:

В этом ряде ограничимся первыми двумя слагаемыми

 

В результате получаем простейшую формулу

, которая реализует метод Эйлера.

, ,

точность

 

погрешность на одном шаге .

Таким образом, погрешность метода Эйлера равна .

 

Метод 29


Поделиться:



Популярное:

  1. I.4. СЕМЬЯ И ШКОЛА : ОТСУТСТВИЕ УСЛОВИЙ ДЛЯ ВОСПИТАНИЯ
  2. II. Ассистивные устройства, созданные для лиц с нарушениями зрения
  3. II. Порядок представления статистической информации, необходимой для проведения государственных статистических наблюдений
  4. III. Защита статистической информации, необходимой для проведения государственных статистических наблюдений
  5. III. Перечень вопросов для проведения проверки знаний кандидатов на получение свидетельства коммерческого пилота с внесением квалификационной отметки о виде воздушного судна - самолет
  6. Qt-1 - сглаженный объем продаж для периода t-1.
  7. V Методика выполнения описана для позиции Учителя, так как Ученик находится в позиции наблюдателя и выполняет команды Учителя.
  8. V. Порядок разработки и утверждения инструкций по охране труда для работников
  9. VII. Перечень вопросов для проведения проверки знаний кандидатов на получение свидетельства линейного пилота с внесением квалификационной отметки о виде воздушного судна - вертолет
  10. VIII. Какую массу бихромата калия надо взять для приготовления 2 л 0,02 н. раствора, если он предназначен для изучения окислительных свойств этого вещества в кислой среде.
  11. XI. Вход для сопровождающих и зрителей
  12. XXXV. ДЛЯ ЧЕГО БЫЛА НАПИСАНА ЭТА КНИГА?


Последнее изменение этой страницы: 2017-03-11; Просмотров: 1197; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь