Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Критерий устойчивости Найквиста
Замыкание системы регулирования может существенно изменить ее свойства, в том числе и устойчивость. Практика конструирования и создания радиотехнических устройств с обратной связью показала способность последних к самовозбуждению на различных частотах. Например, усилитель при определенных условиях мог приобрести свойства генератора гармонических колебаний некоторой частоты с возрастающей амплитудой. Возник вопрос об оценке устойчивости таких систем. В 1932 г. американский ученый Г. Найквист вывел критерий, который дает необходимые и достаточные условия устойчивости систем с обратной связью. Этот критерий позволяет судить об устойчивости замкнутой системы по характеристике (годографу) разомкнутой системы. Пусть – передаточная функция разомкнутой системы -го порядка, для которой граница устойчивости определятся точкой с координатами . Тогда для замкнутой системы с передаточной функцией точка границы устойчивости сместится по оси абсцисс влево на единицу и ее координатами будут . Для систем, устойчивых в разомкнутом состоянии, критерий Найквиста формулируется следующим образом: для того чтобы устойчивая разомкнутая система оставалась устойчивой в замкнутом состоянии, необходимо и достаточно, чтобы годограф комплексной частотной характеристики разомкнутой системы не охватывал точку с координатами при изменении частоты в пределах . Термин «не охватывает точку» означает, что приращение угла поворота вектора, проведенного из точки с координатами к годографу, при изменении частоты в указанных пределах принимает нулевое значение . В противном случае, если , считают, что годограф точку охватывает. Годограф Найквиста для различных типов разомкнутых систем представлен на рисунке 3.3.
а) замкнутая система устойчива б) замкнутая система неустойчива Рисунок 3.3 – Годограф Найквиста устойчивой разомкнутой системы
В соответствии с критерием Найквиста об устойчивости замкнутой системы можно судить не только по годографу, но и совместно по АЧХ и ФЧХ разомкнутой системы. Устойчивость будет иметь место, если при граничной частоте, на которой абсолютное значение фазы разомкнутой системы равно , амплитудная частотная характеристика будет меньше единицы: при . Для систем, не устойчивых в разомкнутом состоянии, критерий Найквиста формулируется иначе: для того чтобы разомкнутая система, имеющая k неустойчивых полюсов, являлась устойчивой в замкнутом состоянии, необходимо и достаточно, чтобы годограф комплексной частотной характеристики разомкнутой системы охватывал точку с координатами на угол при изменении частоты в пределах . Годограф Найквиста разомкнутой системы при двух неустойчивых полюсах представлен на рисунке 3.4. Рисунок 3.4 – Годограф Найквиста неустойчивой разомкнутой системы , соответствующий устойчивой замкнутой системе
Из критерия Найквиста следует, что нахождение замкнутой системы на границе устойчивости соответствует прохождению годографа разомкнутой системы через точку с координатами . |
Последнее изменение этой страницы: 2019-04-10; Просмотров: 350; Нарушение авторского права страницы