Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Первые уроки систематического курса геометрии
Особые трудности вызывают первые уроки систематического курса планиметрии. Появляется новый предмет с большим количеством новых понятий, терминов, новой символики, новым содержанием задачного материала, резким повышением уровня строгости логических рассуждений. Основное учебное назначение первых уроков – сформировать у учащихся первоначальное представление о стиле мышления в геометрии, о характере геометрических доказательств и положить начало выработке соответствующих умений. Учащиеся должны понимать, что все утверждения, не являющиеся аксиомами, необходимо доказывать, не ссылаясь на очевидность. Конечно, сущность аксиоматического метода объяснять семиклассникам рано. По мере изучения геометрии они постепенно будут проникаться идеей ее дедуктивного построения. Методика первых уроков, первых разделов геометрии предполагает постепенный переход от конкретного к общему, постоянное обращение к наглядности, к окружающей действительности. С самых первых шагов изучения геометрии учителю необходимо иллюстрировать свой рассказ, текст учебника, записи на доске и в тетрадях рисунками. Итак, логика и наглядность. Что мы имеем в виду, говоря о первых уроках геометрии? Это введение в геометрию, первые понятия, аксиомы (не обязательно сразу называть аксиомой), первые теоремы, первые задачи. Введение в геометрию. Надо сказать, что начальная школа в настоящее время работает по учебникам достаточно широкого спектра, которые предусматривают определенное знакомство учащихся с элементами геометрических знаний, умений и представлений учащихся. Вторая ступень тоже вносит определенный вклад в геометрические представления учащихся. Поэтому учителю математики, пришедшему в 7-й класс, следует все это учитывать. Итак, первый урок. Что важно сказать учащимся? · Что такое геометрия? · Как она появилась? · Как развивалась? · Чем будем заниматься? У каждого учителя свои слова, свои эмоции. Понятия. Сравним учебники геометрии А.В. Погорелова [3.9] и Л.С. Атанасяна [3.3]. Геометрические понятия точка и прямая, с которых начинается изучение систематического курса планиметрии, уже знакомы учащимся из пропедевтического курса.
На первых уроках вводятся такие понятия, как «отрезок», «луч» (полупрямая), «угол», которым дается формально-логическое определение. Формирование умения определять понятие осуществляется на протяжении всего курса обучения, так как в каждой теме появляются новые особенности и трудности. Когда и как учащиеся знакомятся с тем, что такое определение понятия, аксиома, теорема?
На первых уроках происходит обучение учащихся доказательствам. В числе первых методов дается метод доказательства от противного. В процессе доказательства этим методом необходимо выделить все его этапы: 1) предположить, что истинно предложение, противоположное заключению теоремы; 2) в результате рассуждений получить противоречие известному истинному предложению или тому, что дано; 3) сделать вывод о том, что предположение неверно; 4) сделать общий вывод [2.6, с.261]. Учитель должен знать, что в рассуждении методом от противного используется логический закон «исключенного третьего» (напр., две прямые пересекаются или не пересекаются, третьего случая быть не может). Задачи. В усвоении первых понятий, аксиом, теорем большую роль играют практические задания и задачи, сопровождаемые рисунками. Практические задания [3.9, с.16]: а) Отметить точки, принадлежащие прямой и не принадлежащие ей; б) Проверить, будут ли названные точки лежать на данной прямой (или прямая проходит через эти точки). Наиболее трудный вариант представлен на рис. 1.
Рис. 1 Рис. 2
в) Пересекаются ли прямые a и c на рис. 2? г) Построить прямые, пересекающиеся в данной точке. В систему упражнений целесообразно включать предложения с пропущенными словами. Например: прямая а … через точку А; точка В … прямой b; прямые a и b … в точке О и т.п. Продолжим сравнение учебников, анализируя задачи на доказательство и на построение.
Следует помнить о различных функциях задач: многие факты (интересные и полезные для дальнейшего решения) мы получаем в процессе решения задач. Вопрос о взаимном расположении прямых изучается одним из первых в систематическом курсе планиметрии. И это не случайно. Параллельность и перпендикулярность на плоскости и в пространстве – один из важнейших вопросов курса геометрии, так как без знания этих отношений невозможно изучение свойств фигур, познание окружающего мира. Именно при изучении параллельности вводится новый метод доказательства (косвенное доказательство – от противного), рассматривается история геометрии как науки. Можно привести примеры неевклидовых геометрий. В имеющейся учебно-методической литературе по геометрии представлена различная последовательность изучения разделов о параллельности и перпендикулярности прямых на плоскости. Какова бы ни была последовательность изучения, логическая структура раздела должна содержать: · определение, · существование (построение), · свойства, · признаки, · применение к решению задач. Большое значение для последовательности изучения разделов, а особенно для решения задач, имеют вопросы взаимосвязи параллельности и перпендикулярности. Взаимосвязь может быть раскрыта в процессе решения следующих задач на доказательство. 1. Доказать, что два перпендикуляра к одной и той же прямой параллельны. 2. Если одна из двух параллельных прямых перпендикулярна к данной прямой, то другая также перпендикулярна к этой прямой. В учебнике Л.С. Атанасяна параллельность двух перпендикуляров к прямой на плоскости устанавливается уже в одном из первых пунктов учебника (с. 23) на основе перегибания рисунка. Этот факт не выделен в качестве теоремы существования параллельных прямых. Однако он используется для доказательства признака параллельности прямых при условии равенства накрест лежащих углов (с. 55-56). Поэтому учителю следует аккуратно обосновывать принадлежность трех точек одной прямой (в тексте учебника это точки H, O, H1), обратить внимание на неполноту доказательства (согласно методу полной индукции нет третьего случая – для тупых накрест лежащих углов), нет внешних накрест лежащих углов. Задание № 3 для самостоятельной работы. 1. Проведите сравнительный анализ последовательности изучения разделов о параллельности и перпендикулярности прямых на плоскости в различных школьных учебниках. 2. Докажите, что геометрия – дедуктивная наука, используя следующие утверждения: «аксиоматический метод – метод (способ) построения научной теории», «построение какой-либо дисциплины аксиоматическим методом называют дедуктивным». Некоторые методические рекомендации к первым урокам геометрии 1. Надо учитывать, что вначале учащиеся, побуждаемые обосновывать то, что и «так видно», и не имеющие достаточного опыта в логических рассуждениях, будут испытывать определенные трудности. Для убеждения учащихся учителю целесообразно показать геометрические иллюзии (рис. 3, 4а и 4б), примеры объяснений, доказательств. 2. Давая образцы правильных рассуждений, не следует сразу же предъявлять слишком высокие требования к ответам учащихся. Необходима постоянная помощь учителя. 3. Для того чтобы облегчить учащимся запоминание формулировок, целесообразно заготовить таблицы с текстами аксиом, определений и вывешивать их по мере надобности, а также использовать тетради с печатной основой. 4. Необходимо обратить внимание на выяснение смысла и отработку специфических речевых оборотов, таких как «одна и только одна», «любые две», «найдется» и т.д., используемых в формулировках аксиом. 5. Следует иметь в виду, что аксиоматики адресованы учителю (в первую очередь) и любознательному ученику на завершающем этапе изучения геометрии. 6. Не следует забывать, что в основе преподавания геометрии лежат логика, наглядность и интуиция.
Таким образом, оптимальное соотношение интуитивно-наглядного и логического в преподавании, необходимость построения дедуктивной теории и формирование соответствующего уровня логического мышления, развитие пространственного воображения, современные научные знания и возможности учащихся в их усвоении – проблемы школьного курса геометрии. Список литературы 1. Нормативные документы: 1.1. Программы общеобразовательных учреждений. Геометрия. 7-9 классы /сост. Т.А. Бурмистрова. – М.: Просвещение, 2009. 1.2. www.edu.ru – Российское образование. Федеральный портал. Государственный образовательный стандарт основного общего образования по математике. 2. Методики: 2.1. Виноградова Л.В. Методика преподавания математики в средней школе / Л.В. Виноградова. – Ростов н/Д: Феникс, 2005. 2.2. Методика и технология обучения математике. Курс лекций / под ред. Н.Л. Стефановой, Н.С. Подходовой. – М.: Дрофа, 2005. 2.3. Методика обучения геометрии: учеб. пособие для студентов высш. пед. учеб. заведений / В.А. Гусев, В.В. Орлов, В.А. Панчищина и др.; под ред. В.А. Гусева. – М.: Академия, 2004. 2.4. Методика преподавания геометрии в старших классах средней школы / под ред. А.И. Фетисова. – М.: Просвещение, 1967. 2.5. Методика преподавания математики в средней школе. Частные методики / Ю.М. Колягин и др. – М.: Просвещение, 1977. – С. 146 – 188. 2.6. Методика преподавания математики в средней школе. Частная методика / сост. В.И. Мишин. – М.: Просвещение, 1987. – Гл. 12, 16. 3. Учебники и учебные пособия для учащихся: 3.1. Александров А.Д. Геометрия: учеб. для 7-9 кл. /А.Д. Александров, А.Л. Вернер, В.И. Рыжик. – М.: Просвещение, 2008. 3.2. Бевз Г.П. Геометрия: учеб. для 7-11 кл. общеобразоват. учреждений / Г.П. Бевз, В.Г. Бевз, Н.Г. Владимирова. – 2-е изд. – М.: Просвещение, 1994. 3.3.Геометрия 7 – 9: учеб. для общеобразоват. учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 15-е изд. – М.: Просвещение, 2005. 3.4. Дышинский Е.А. Геометрия треугольника и окружности: Факультативный курс по математике для уч-ся 10 – 11 классов / Е.А. Дышинский; Перм. гос. пед. ин-т. – Пермь, 1993. 3.5. Киселев А.П. Геометрия: Планиметрия. 7-9 кл.: учебник и задачник / А.П. Киселев, Н.А. Рыбкин. – М.: Дрофа, 1995. 3.6. Клопский В.М. Геометрия: учеб. пособие для 9-10 кл. сред. шк. / В.М. Клопский, З.А. Скопец, М.И. Ягодовский; под ред. З.А. Скопеца. – М.: Просвещение, 1983. 3.7. Колмогоров А.Н. Геометрия: учеб. пособие для 6-8 кл. сред. школы / А.Н. Колмогоров, А.Ф. Семенович, Р.С. Черкасов; под ред. А.Н. Колмогорова. – М.: Просвещение, 1981. 3.8. Никитин Н.Н. Геометрия: учеб. для 6-8 классов / Н.Н. Никитин. – М.: Просвещение, 1970. 3.9. Погорелов А.В. Геометрия: учеб. для 7 – 9 кл. общеобразоват. учреждений / А.В. Погорелов. – 5-е изд. – М.: Просвещение, 2004. 3.10. Шарыгин И.Ф. Геометрия. 7-9 классы: учеб. для общеобразоват. учеб. заведений /И.Ф. Шарыгин. – М.: Дрофа, 2002. 4. Пособия для учителя: 4.1. Вернер А.Л. Геометрия: кн. для учителя: метод. рекомендации к учеб. 7-9 кл. /А.Л. Вернер, Л.П. Евстафьева, В.И. Рыжик. – М.: Просвещение, 2008. 4.2. Изучение геометрии в 7, 8, 9 классах: метод. рекомендации: кн. для учителя/ [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. – М.: Просвещение, 2008. 4.3. Карнацевич Л.С. Изучение геометрии в 6-м классе: Из опыта работы / Л.С. Карнацевич, А.И. Грузин; под ред. И.Ф. Тесленко. – М.: Просвещение, 1983. 4.4. Мельникова Н.Б. Геометрия в 7 классе: пособие для учителей / Н.Б. Мельникова, Т.М. Мищенко, Л.Ю. Чернышева. – М.: Просвещение, 1984. 5. Периодическая печать («Квант», «Математика в школе», «Математика» – приложение к газете «1-е сентября»): 5.1.Александров А.Д. Диалектика геометрии / А.Д.Александров//Математика в школе. – 1986. – №1. 5.2.Александров А.Д. О геометрии / А.Д.Александров // Математика в школе. – 1980. – № 3. 5.3. Перельман Я.И. Как сделать изучение геометрии интересным и жизненным? /Я.И. Перельман // Математика в школе. – 2008. – № 3. – С. 71. 5.4. Рыжик В.И. Геометрия и практика / В.И. Рыжик // Математика в школе. – 2006. – № 6. – С. 9. 5.5. Саранцев Г.И. Перед встречей с доказательством / Г.И. Саранцев // Математика в школе. – 2004. – № 9. – С. 41. 5.6.Смилга В. Как начиналась геометрия /В. Смилга // Квант. – 1992. – № 2. – С. 11. Методические рекомендации для организации самостоятельной работы студентов по теме «Изучение геометрии в основной школе» 1. Изучите стандарты основного общего образования, программу и учебники по геометрии для основной школы. 2. Подготовьте материал для исторической справки (с презентацией) о вкладе Фалеса Милетского, Пифагора, Платона, Евклида в развитие геометрии [5.6]. 3. Выполните задания №№ 1 – 3 (в тексте лекции) для самостоятельной работы. Индивидуальные задания: 1. Подготовьте вводное слово – введение в геометрию. 2. Разработайте методику формирования понятий: а) точка и прямая; б) угол. 3. Разработайте методику изучения основного свойства [3.9, с. 4 – 13]: а) I; б) II; в) III; г) IV; д) V; е) VI; ж) VII; з) VIII; и) IX. Рекомендации к выполнению заданий: – составьте системы подготовительных задач, продумайте методику их решения; – используйте дидактические материалы для организации работы по усвоению аксиомы; – подготовьте методический этюд с презентацией. 4. Подготовьте историческую справку о геометрии Н.И. Лобачевского (к свойству IX). 5. Разработайте методику изучения теоремы: а) Т1.1 [3.9, с.13]; б) Т2.2 [3.9, с. 22]; в) Т2.3 [3.9, с. 23]. 6. Разработайте методику решения задачи: а) № 16 [3.9, с.17]; б) № 20 [3.9, с. 18]; в) № 26 [3.9, с. 18]; г) № 36 [3.9, с. 19]; д) № 18 [3.9, с. 27]. Приложение А.Д. Александров О геометрии * Кажется, общепризнано, что наше среднее образование страдает перегрузкой. Но даже постановления, обязывающие преодолеть эту болезнь, не ведут к радикальным результатам. Каждый специалист настаивает на том, что без его предмета, без таких-то и таких-то разделов обойтись никак невозможно. Но если спросят: почему? – то последует ответ: это невозможно никак, потому что никак невозможно... ибо образование и состоит в наполнении человека знаниями. Однако, по более глубокому пониманию, цель среднего образования состоит в том, чтобы дать человеку основные практически нужные знания и развить его личность, развить духовно – в умственном и нравственном отношении (последнее и есть самое главное). Поэтому вопрос о нужности любого школьного предмета, о необходимости того или иного его раздела сводится к вопросу о его практической надобности и значении в развитии личности. И если этот вопрос поставить всерьез, то выяснится, что кое-что, а то и довольно многое можно исключить из программ без сожаления, а кое-что следовало бы и добавить. Только всерьез поставить и решить этот вопрос для каждого предмета не очень просто; потому его решение и заменяют простыми уверениями в надобности «своего» предмета. Понимание того, что практически нужно в данном предмете и что в нем может служить развитию личности, должно определять и содержание предмета, и постановку его преподавания. В конечном счете, это понимание должно служить основой для решения всех вопросов преподавания. Мы рассмотрим в этом плане курс геометрии, особенно стереометрии, и в первую очередь, с точки зрения его роли в развитии личности. Одним из результатов нашего рассмотрения будет вывод о том, что из программы стереометрии полезно исключить целых два раздела. 1. Противоречивая сущность геометрии Особенность геометрии, выделяющая ее не только среди остальных частей математики, но и среди других наук вообще, состоит в том, что в ней самая строгая логика соединена с наглядным представлением. Геометрия в своей сущности и есть такое соединение живого воображения и строгой логики, в котором они взаимно организуют и направляют друг друга. Воображение дает непосредственное видение геометрического факта и подсказывает логике его выражение и доказательство, а логика в свою очередь придает точность воображению и направляет его к созданию картин, обнаруживающих нужные логике связи. Это, несомненно, так, во всяком случае, для трехмерной евклидовой геометрии. Но в источнике и содержательном основании неевклидовой и многомерной геометрии тоже лежат наглядные представления, хотя бы обобщенные; без них любой раздел геометрии перестает быть собственно геометрией. Но мы будем говорить здесь не о всей геометрии, а о той ее части, которая изучается в школе, и при этом специально о стереометрии. Именно в стереометрии указанная особенность геометрии выступает наиболее ярко. Во-первых, потому, что в ней требуется пространственное воображение. Факты планиметрии изображаются на доске и на бумаге в их подлинном виде (не считая того, что нельзя нарисовать бесконечную прямую без всякой толщины и т. п.). Но факты стереометрии изображаются условно и потому не могут быть верно восприняты без дополнительного пространственного представления. А оно составляет известную трудность, нередко значительную. Во-вторых, стереометрия изучается в последних классах школы, когда учащиеся должны быть достаточно развиты для того, чтобы воспринять логику дедуктивного изложения. Поэтому курс стереометрии можно и следует строить с большей логической последовательностью и доказательностью, чем курс планиметрии. Таким образом, мы с большим правом можем повторить о курсе стереометрии то, что было сказано о геометрии вообще. Стереометрия и должна быть преподана в соединении наглядности и логики, как живое пространственное воображение, пронизанное и организованное строгой логикой. Живое воображение, скорее, ближе искусству, сухая строгая логика – привилегия науки. Они, можно сказать, совершенные противоположности («лед и пламень не столь различны меж собой»). Однако геометрия их все же соединяет, и задачи преподавания – соединить их в одном учебном предмете. Это есть реальное взаимопроникновение, единство противоположностей, противоречие в самой сущности предмета, которое не может быть разрешено иначе, как уничтожением самого предмета, т. е. ликвидацией курса геометрии, заменой его чем-то другим. Это противоречие составляет особую трудность, а вместе с этим и особую прелесть геометрии. Трудно сочетать столь противоположные свойства, как живость воображения и строгость мысли, но зато, когда их единство осуществляется, достигается большая ясность понимания и радость непосредственного «видения» истины. В курсе геометрии соединяются еще две противоположности: абстрактная математическая геометрия и реальная геометрия – реальные пространственные отношения и свойства тел. Это противоречие выступает уже в тот момент, когда на доске «проводят прямую» и говорят: «Проведем прямую через точки А и В...».Но на доске нет точек и невозможно провести прямую: геометрические точки и прямые – это идеальные объекты, они не существуют иначе как в абстрактном мышлении, их, в строгом смысле, нельзя даже представить, а можно только мыслить. Утверждения геометрии высказываются и доказываются для идеальных геометрических объектов, но воспринимаются как утверждения об объектах наглядно представимых и применяются к реальным вещам, в которых идеальные объекты геометрии реализуются нередко очень условно. Стереометрия начинается с того, что «через три точки проходит плоскость». Но показать это реально можно лишь с чрезвычайной условностью. «Плоскость» в реальности – это либо «плоский предмет», либо «плоская поверхность» предмета, т. е. не геометрическая плоскость как таковая, тем более бесконечная. При всей своей абстрактности геометрия возникла из практики и применяется в практике. Поэтому преподавание геометрии обязательно должно связывать ее с реальными вещами, с другими дисциплинами, особенно с физикой (и через приложения, и в иллюстрациях геометрических понятий и утверждений, и в определениях основных понятий). Например, в действующем курсе геометрии перемещение определяют как отображение всего пространства или (в планиметрии) – всей плоскости. Но это нелепо. На самом деле перемещают предметы. Соответственно, в курсе геометрии нужно начинать с понятия о перемещении фигур как образе реальных перемещений предметов с одного места на другое[8]; это отвечает наглядному представлению и удобно в геометрии (например, если нужно одновременно переместить две фигуры так, чтобы они покрыли данную точку). При всем этом связь геометрии с реальностью заключает противоречие – несоответствие реальных вещей геометрическим абстракциям. Таким образом, преподавание геометрии должно включать три тесно связанных, но вместе с тем и противоположных элемента: логику, наглядное представление, применение к реальным вещам. Этот «треугольник» составляет, можно сказать, душу преподавания геометрии; воображение ближе к реальности, как это и изображено на схеме. Логика Воображение Реальность Задача преподавания геометрии – развить у учащихся соответствующие три качества: пространственное воображение, практическое понимание илогическое мышление. Разумеется, в задачи курса геометрии входит: дать учащимся, как это принято говорить, основные знания и умения в области геометрии. Однако все же главные, глубинные задачи преподавания геометрии заключены в трех указанных элементах, во-первых, ввиду их значения для общего развития, во-вторых, потому, что они уже включают основное из тех знаний, которые должен давать курс геометрии. Поэтому остановимся сначала на этих элементах. 2. Воображение и реальность Воображение – это прекрасная и могущественная способность человека. Что являет собой, в подавляющей части, искусство и техника, как не воплощенное воображение!? Научные идеи и теории также оказываются, в большой мере, его порождениями. Пространственное воображение, развитию которого служит геометрия, составляет важный компонент в общей способности человека к воображению и имеет существенное значение в ряде отношений. Оно, разумеется, вообще необходимо человеку для ориентировки в окружающем мире и в развитой форме существенно для многих видов деятельности. Оно нужно квалифицированному рабочему, инженеру, архитектору, авиатору, скульптору и т. д. Вместе с тем развитие пространственного воображения расширяет видение мира, делает его более пространственно выпуклым и содержательным, подобно тому, что делает стереоскоп с плоскими снимками. Развитое воображение обогащает внутренний мир человека, давая ему возможность создавать в себе я, созерцать разнообразные картины. Словом, развитое пространственное воображение – это важный элемент общей культуры. Геометрия, требуя воображать геометрические образы в их идеальной точности и логической определенности, дает этим пространственному воображению утонченность и точность. Великий архитектор нашего века Ле Корбюзье (1887— 1965) писал: «Геометрия есть средство, с помощью которого мы воспринимаем среду и выражаем себя. Геометрия — это основа. Кроме того, она является материальным воплощением символов, выражающих все совершенное, возвышенное. Она доставляет нам высокое удовлетворение своей математической точностью. Машина идет от геометрии. Следовательно, человек нашей эпохи своими художественными впечатлениями обязан в первую очередь геометрии. После столетия анализа современное искусство и современная мысль рвутся за пределы случайного, и геометрия приводит их к математическому порядку и гармонии. Эта тенденция усиливается с каждым днем» [9] . В этих вдохновенных словах геометрия воспета в ее воплощении в реальных вещах, в единстве геометрического образа и его материального осуществления. «Машина идет от геометрии». Вся техника пронизана геометрией и начинается с геометрии, ибо всюду, где нужна малейшая точность размеров и формы, где нужна структурность взаимного расположения частей – там вступает в силу геометрия. Конструктор, рабочий-изобретатель, инженер представляют себе сначала примерный вид создаваемой детали или конструкции, чертят, уточняют, делают модели; наконец, складывается точное представление, делаются рабочие чертежи, и по ним воссоздают пространственный вид предмета, изготовляют его. Так происходит взаимодействие пространственного воображения, изображения на чертеже и реального воплощения в модели или в готовом предмете. В механике и в физике геометрические представления также играют фундаментальную роль уже потому, что движение, процессы происходят в пространстве. Вспомним хотя бы кинематику и геометрическую оптику. Вспомним еще строение кристаллов, пространственные модели сложных молекул, симметрию живых организмов и др. О значении пространственных представлений в изобразительном искусстве и архитектуре говорить не приходится – оно очевидно. (Отметим, между прочим, что посвященная искусству книга одного из самых выдающихся советских художников – Петрова-Водкина – называется «Пространство Евклида».) Ученику нужно показать эти реальные связи и воплощения геометрии в жизни, в природе, в искусстве, в технике и науке, чтобы геометрия предстала перед ним не как сухой предмет, подлежащий зубрежке и сдаче на экзамене, а как полное содержания, значения и красоты явление культуры, как наука в ее связях с реальными вещами. Пространственные представления, геометрическая интуиция играют существеннейшую роль вне геометрии и в самой математике. Математический анализ немыслим без геометрических образов, начиная с числовой прямой, графиков функций и т. д. Эта роль геометрии сказалась в нашем веке в создании функционального анализа, занявшего с его основным понятием пространства функций центральное место в современной математике. Чтобы не возбудить подозрений в стремлении автора-геометра расхвалить свою науку, сошлюсь на суждение одного нашего выдающегося математика другой специальности: «Пространства функций в большинстве случаев бесконечномерны, но возможность направленно воспитать, а затем применить к ним первоначально развитую конечномерную (даже трехмерную) интуицию оказалась исключительно плодотворным открытием»[10]. Этот пример – формирование громадной области науки по указаниям геометрической интуиции – с большой силой показывает нам ту направляющую роль, какую играет геометрическое воображение в его союзе с логикой. Точно так же должно быть и в школьном преподавании. Изложение любого элемента курса – будь то аксиома, определение, теорема, задача – должно начинаться с наглядной картины, которую учащиеся и должны усвоить в первую очередь. Надо, чтобы ученик представлял себе, допустим, что такое пирамида, мог описать ее, мог решить касающуюся ее простую задачу. А если при этом он не может безошибочно произнести точного ее определения – в этом еще нет большой беды. Существенно наглядно-оперативное знание предмета, содержащее наглядные представления и умения правильно ими оперировать. Все представляют себе, что такое стул, и умеют им пользоваться, но, наверное, каждый затруднится произнести сразу, как на экзамене, определение: «стулом называется...». У математиков XVII – XVIII вв. не было точных определений ни функции, ни предела, ни самого переменного х, но они действовали с замечательным успехом (вспомним хотя бы Эйлера). Педантичное стремление дать каждому понятию словесное определение может вести к тому, что вместо пояснения и уточнения представлений, которые уже есть у учащихся, вместо формирования у них новых ясных понятий им дается нечто трудно представимое или вовсе невообразимое, а лишь выраженное в словесной оболочке – порой такое, что они не могут ни понять правильно, ни применить. Например, в действующих учебниках дается определение: направлением называется множество всех сонаправленных лучей. И так как ученикам уже внушили, что множество – это собрание элементов, что оно состоит из своих элементов, то выходит, что направление состоит из всех сонаправленных лучей. Интуитивное понятие направления, свойственное каждому человеку, заменяется чем-то невообразимым и к тому же совершенно бесполезным, поскольку таким понятием направления никто, собственно, не пользуется... Сходное положение обнаруживается с понятиями вектора, многогранника и др. Вряд ли есть что-либо более вредное для духовного, умственного и морального развития, чем приучать человека произносить слова, смысл которых он толком не понимает и при надобности действует не по этим словам, а по другим понятиям. Однако мы свернули на критику существующих учебников, которая сейчас вовсе не входит в нашу задачу. О них стоило упомянуть лишь затем, чтобы ярче оттенить значение наглядности и не дать подумать, что, всячески подчеркивая ее значение, мы «ломимся в открытые двери». Вовсе нет! Есть все основания четко выдвинуть и подчеркнуть как первый основной принцип преподавания геометрии: каждый элемент курса геометрии должен опираться на возможно более простое и ясное наглядное представление, с такого представления надо начинать и им руководствоваться в изложении. Соответственно этому изложение следует начинать с наглядной картины – с рисунка на доске, описания, показа модели, примеров. В стереометрии существенно именно рисовать, чтобы вызвать пространственное представление, пользуясь, например, штриховкой, оттеняющей грани многогранника и т. п. (В этой связи заметим в скобках, что на физико-математических и естественных факультетах педагогических институтов полезно было бы ввести занятия по специальному рисованию.) Вместе с рисунком должно идти разъяснение его пространственного содержания, возбуждающее верное пространственное представление. Одновременно нужно разъяснять также точный геометрический смысл изображаемого – пронизать и организовать наглядное представление точной логикой. Тут же необходимо, если это не сделано ранее, дать реальные примеры из жизни, из техники и т. п. Логически организованное представление дает нужную формулировку определения, теоремы или задачи. За этим вступают в действие логические доказательства. Геометрический метод и состоит в том, что само логическое доказательство или решение задачи направляется наглядным представлением; лучше всего, когда доказательство или решение, можно сказать, видно из наглядной картины. (В старинных индийских сочинениях бывало так, что доказательство сводилось к чертежу, подписанному одним словом «Смотри! »). При прочих равных условиях следует предпочесть наглядный вывод вычислительному и ради наглядности можно жертвовать логической точностью и обоснованностью. Так, полезно привлекать наглядные соображения непрерывности, наглядно представляемые движения точек и фигур и другие образы, заимствованные даже из механики и физики («сам» Архимед пользовался механическими соображениями в своих геометрических выводах, хотя, конечно, окончательное оформление их совершал со всей строгостью). Популярное:
|
Последнее изменение этой страницы: 2016-03-16; Просмотров: 4804; Нарушение авторского права страницы