Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии 


Статистических характеристик вариационных рядов




 

При больших значениях вариантов и соответствующих им частот вычисление выборочного среднего, дисперсии и выборочных моментов по приведенным ниже формулам приводит к громоздким вычислениям.

В этом случае используют условные варианты , определяемые по формулам: , где числа и выбираются произвольно.

Чтобы упростить вычисления в качестве выбирают вариант, который имеет наибольшую частоту или находится в середине ряда. Число называется «ложным нулем». В качестве выбирают число равное длине интервала ( в случае интервального ряда) или наибольший общий делитель разностей .

Для вычисления числовых характеристик выборки составляем табл. 7.

 

Таблица 7.

         
         
         
 

 

Контроль:

С помощью сумм, полученных в нижней строке таблицы, находим условные моменты:

, ,

, .

 

Числовые характеристики выборки вычисляем по формулам:

 

; ; ;

; ,

 

где и находим по формулам:

,

.

 

 

Пример 5.Вычислить числовые характеристики выборки, рассмотренной в примере 4 (табл.4), для которой построен интервальный ряд (табл.5).

 

¦ В качестве вариантов возьмем середины интервалов. Перейдем к условным вариантам.

Вариант, значение которого ,имеет наибольшую частоту и находится в середине ряда. Примем его за «ложный ноль» (начало отсчета).

 

Условные варианты найдем по формуле:

,

где , .

 

Составим расчетную табл.8 по форме табл.7

Таблица 8

-1,76 -3 -6 -54
-1,16 -2 -12 -48
-0,56 -1 -11 -11
0,04
0,64
1,24
1,84
  -6 -24

Контроль:

.Расчеты проведены верно.

По данным табл. 8 находим условные моменты:

, ,

, .

Находим числовые характеристики выборки:

 

 

 

 

Вычислим центральные моменты третьего и четвертого порядка:

 

Вычислим выборочные коэффициенты асимметрии и эксцесса:

 

. ?

 

СТАТИСТИЧЕСКИЕ ОЦЕНКИ

 

Одной из центральных задач математической статистики является задача оценивания теоретического распределения случайной величины на основе выборочных данных.

При этом часто предполагается, что вид закона распределения генеральной совокупности известен, но неизвестны параметры этого распределения, такие как математическое ожидание, дисперсия. Требуется найти приближенные значения этих параметров, то есть получить статистические оценки указанных параметров.

 

Определение. Статистической оценкой параметра теоретического распределения называют его приближенное значение, зависящее от данных выбора.

Рассматривая выборочные значения как реализации случайных величин , получивших конкретные значения в результате опытов, можно представить оценку как функцию этих случайных величин: . Это означает, что оценка тоже является случайной величиной.

Если для оценки взять несколько выборок, то получим столько же случайных оценок .

Если число наблюдений невелико, то замена неизвестного параметра оценкой приводит к ошибке, которая тем больше, чем меньше число опытов.

 

Точечные оценки

Статистические оценки могут быть точечными и интервальными.

Точечные оценки представляют собой число или точку на числовой оси. Чтобы оценка была близка к значению параметра , она должна обладать свойствами состоятельности, несмещенности и эффективности.

Определение. Оценка параметра называется состоятельной, если она сходится по вероятности к оцениваемому параметру, то есть для любого :

 

.

 

Поясним смысл этого равенства.

Пусть - очень малое положительное число. Тогда данное равенство означает, что чем больше объем выборки , тем ближе оценка приближается к оцениваемому параметру .

Свойство состоятельности нужно проверять в первую очередь. Оно обязательно для любого правила оценивания. Несостоятельные оценки не используются.

 

Определение. Оценка параметра называется несмещенной, если , то есть математическое ожидание оценки равно оцениваемому параметру. Если , то оценка называется смещенной.

Это свойство оценки желательно, но не обязательно. Часто полученная оценка бывает смещенной, но ее можно поправить так, чтобы она стала несмещенной.

Иногда, оценка бывает асимптотически несмещенной ,

то есть .

Требования несмещенности особенно важно при малом числе опытов.

 

Определение. Несмещенная оценка параметра называется эффективной, если она среди всех несмещенных оценок, в определенном классе оценок данного параметра, обладает наименьшей дисперсией.

 

Можно показать, что:

- является состоятельной, несмещенной и эффективной оценкой в классе линейных оценок;

- является состоятельной, смещенной оценкой ;

- является состоятельной, несмещенной оценкой ;

(при больших разница между и мала.

используется при малых выборках, обычно при ) ;

 

- относительная частота появления события в независимых испытаниях является состоятельной, несмещенной и эффективной оценкой, в классе линейных оценок, неизвестной вероятности ( - вероятность появления события в каждом испытании);

 

- эмпирическая функция распределения выборки является состоятельной, несмещенной оценкой функции распределения случайной величины .

 

Для нахождения оценок неизвестных параметров используют различные методы. Наиболее распространенными являются: метод моментов, метод максимального правдоподобия (ММП), метод наименьших квадратов (МНК).

 

Интервальные оценки

При выборке малого объема точечная оценка может существенно отличаться от оцениваемого параметра. В этом случае целесообразно использовать интервальные оценки.

 

Определение. Интервальнойназывают оценку, которая определяется двумя числами – концами интервала.

Пусть найденная по данным выборки величина служит оценкой неизвестного параметра . Оценка определяет тем точнее, чем меньше , то есть чем меньше в неравенстве .

Поскольку - случайная величина, то и разность - случайная величина. Поэтому неравенство , при заданном может выполняться только с некоторой вероятностью.

 

Определение. Доверительной вероятностью ( надежностью) оценки параметра называется вероятность , с которой выполняется неравенство .

Обычно задается надежность и определяется . Чаще всего надежность задается значениями от 0,95 и выше, в зависимости от конкретно решаемой задачи.

Неравенство можно записать .

Определение. Доверительным интервалом называется интервал , который покрывает неизвестный параметр с заданной надежностью .

 

 





Рекомендуемые страницы:


Читайте также:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 342; Нарушение авторского права страницы


lektsia.com 2007 - 2019 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.) Главная | Обратная связь