Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Второе начало термодинамики в формулировках Кельвина и Клаузиуса



Первый закон термодинамики характеризует процессы превращения энергии с количественной стороны, в нем содержится все необходимое для составления энергетического баланса любого процесса: равновесного или неравновесного, обратимого или необратимого. Однако оказывается, что далеко не всякое изменение, при котором соблюдается этот закон, может осуществиться на самом деле. Имеются дополнительные условия, которым должно подчиняться явление, чтобы оно могло наступить. Первый закон термодинамики не содержит никаких указаний о возмож-ности протекания процесса в том или ином направлении. Тогда как опыт свидетельствует, что реальные процессы передачи энергии (например, с одного уровня давления или температуры на другой), будучи процес-сами неравновесными (необратимыми), имеют четко определенную нап-равленность и сопровождаются необратимыми явлениями, т. е. такими изменениями, которые не могут быть устранены противоположными процессами такого же характера. Из опыта известно, что любая форма энергии (работа) – механическая, электромагнитная, световая, химичес-кая и др. – при ее превращениях в конце концов полностью переходит в энергию теплового движения – во внутреннюю энергию тел. Однако обратный процесс полного преобразования теплоты в работу неосу-ществим: невозможно энергию хаотического движения молекул полно-стью преобразовать в энергию направленного макроскопического движе-ния. Это свидетельствует о качественной неравноценности теплоты и ра-боты как форм обмена энергией. В результате анализа неравноценности теплоты и работы и был сформулирован второй закон термодинамики, в котором обобщено огромное количество опытных данных.

В наиболее общем виде этот закон может быть выражен так: “Любой реальный самопроизвольный процесс является необратимым”. Любые другие формулировки являются частными случаями этой.

Первое определение второго закона термодинамики было дано в

1850 г. Рудольфом Клаузиусом: “Невозможен процесс, единственным конечным результатом которого была бы передача теплоты от менее нагретого тела к более нагретому”.

В 1851 г. У. Томсон (лорд Кельвин) предложил другую формулировку этого закона (постулат Кельвина): “Невозможно осуществить круговой процесс, единственным результатом которого было бы превращение в работу теплоты отнятой у какого-либо теплового резервуара, без всяких изменений в других телах”. Постулат Кельвина можно представить в следующем виде (по В. Оствальду): “Невозможно построить циклически действующую тепловую машину, которая производила бы работу за счет охлаждения какого-либо тела без всяких изменений в других телах”. То есть невозможно создать циклически действующую тепловую машину, энергетическая диаграмма которой представлена на рис. 36.

Р и с. 36

Такую машину называют вечным двигателем второго рода. В отличие от вечного двигателя первого рода, в котором работа производится из ничего, вечный двигатель второго рода производит работу в точности равную количеству тепловой энергии , заимствованной у источника тепла. Поэтому закон сохранения для вечного двигателя второго рода выполняется. Однако попытки построить такую машину всегда терпели неудачу. Объясняется это тем, что работа за цикл тепловой машины определяется площадью цикла и эта площадь отлична от нуля только в том случае, если процесс расширения рабочего вещества идет по кривой (рис. 32), расположенной выше, чем процесс сжатия, идущий по кривой . При этом кривой – более высокие температуры источ-ников тепла, от которых рабочее вещество получает тепло, чтобы расширяться, а кривой соответствуют более низкие температуры приемников тепла, которым рабочее вещество отдает тепло при сжатии. Если же процесс расширения рабочего вещества идет по кривой , а сжатия – по кривой , то работа за цикл равна нулю. Поэтому, чтобы за цикл тепловая машина производила положительную работу, необхо-димо располагать двумя группами качественно разных источников теп-ла: одна группа источников тепла по пути расширения имеет темпе-ратуры более высокие, чем другая группа источников тепла, располо-женных по пути сжатия рабочего вещества и имеющих температуры более низкие. Так что одного источника тепла (даже с переменной температурой) не достаточно, чтобы в циклически действующей тепло-вой машине получать положительную работу, т. е. вечный двигатель вто-рого рода невозможен. В дальнейшем будет показано, что в некотором смысле наилучшем цикле – цикле Карно – достаточно двух источников тепла с постоянными, но разными температурами.

Покажем, что постулаты Клаузиуса и Кельвина эквивалентны, т. е. если не справедлив один из них, то не верен и другой.

Предположим, что не выполняется постулат Клаузиуса. Рассмотрим тепловую машину, рабочее вещество которой за цикл потребляет от горячего источника количество тепла , отдает холодному источнику количество тепла и совершает над окружающей средой работу Так как, по предположению, постулат Клаузиуса не верен, то можно тепло вернуть горячему источнику без изменений в окружающей среде. В результате состояние холодного источ­ника не изменилось; горячий же источник отдал рабочему веществу количество тепла и за счет этого тепла машина совершила работу , что противоречит постулату Кельвина.

С другой стороны, предположим, что не верен постулат Кельвина. Тогда с помощью вечного двигателя второго рода можно получить механическую работу за счет теплоты взятой у какого-либо источника, например, холодного источника. Эту механическую работу можно путем трения полностью передать другому телу, например, горячему источнику. В результате теплота , взятая у холодного источника, передана горячему источнику и никаких других изменений в окружающей среде не произошло. А это противоречит принципу Клаузиуса.

Таким образом, постулаты Клаузиуса и Кельвина эквивалентны.

 

Цикл Карно

Цикл Карно является обратимым циклическим процессом с двумя источниками теплоты, имеющими разные, но постоянные температуры. Так как температуры источников тепла постоянные, а процессы получения и отдачи рабочим веществом тепла должны быть обратимыми, то эти процессы могут быть только изотермическими. При этом температура рабочего вещества в цикле должна, очевидно, меняться без теплообмена с окружающей средой, т.е. в адиабатных условиях. Поэтому цикл Карно состоит из двух обратимых изотермических и двух обратимых адиабатных процессов, чередующихся между собой.

Цикл Карно осуществляется рабочим веществом следующим образом (рис. 37).

Р и с. 37

Рабочее вещество, расширяясь изотермически от состояния до состояния , получает количество тепла от горячего источника, имеющего температуру на бесконечно малую вели-чину большую, чем температура рабочего вещества (обратимость),

т. е. . При этом, если в качестве рабочего вещества взять идеальный газ, то он производит работу (2.7.22), равную количеству полученного тепла :

. (2.11.1)

В состоянии 2 к рабочему веществу прекращается подвод тепла и затем в обратимом адиабатном процессе расширения до объема температура рабочего вещества уменьшается до температуры , которая на бесконечно малую величину больше температуры холодного источника Далее рабочее вещество изотермически обратимо сжимается от объема до объема . При этом рабочее вещество (идеальный газ) отдает холодному источнику коли-чество тепла

. (2.11.2)

Откуда находим

. (2.11.3)

Наконец, замыкающим цикл процессом является обратимый адиабатный процесс, в котором рабочее вещество возвращается в начальное состояние 1.

Вычислим КПД цикла Карно. По определению КПД любого цикла

. (2.11.4)

Подставляя выражения (2.11.1) и (2.11.3) в (2.11.4), получим

(2.11.5)

Из последнего выражения видно, что КПД цикла не зависит от количества рабочего вещества . Уравнение адиабаты идеального газа запишем для двух адиабатных процессов 23 и 41:

(2.11.6)

. (211.7)

Откуда находим

(2.11.8)

Подставив последнее выражение в (2.11.5), будем иметь:

(2.11.9)

Таким образом, КПД цикла Карно, произведенного с идеальным газом, определяется только температурами (горячего) и (холодного) источников тепла. При этом тем больше, чем больше разность между и . КПД цикла Карно равен 1 в двух практически недостижимых случаях: когда или, когда . Если КПД цикла равен единице, то из выражения (2.11.4) следует, что , т. е. все тепло , полученное от горячего источника, преобразуется в работу, что запрещено вторым началом термодинамики. Следовательно, КПД никакого цикла, в том числе и цикла Карно, не может быть равен единице.

 

Теоремы Карно

Формула (2.11.9) для КПД цикла Карно получена в предположении, что рабочим веществом являлся идеальный газ. Однако эта формула верна для любых рабочих веществ, используемых в цикле Карно, что доказывает следующая теорема.

Первая теорема Карно. КПД обратимого цикла Карно, осуществля-емого между двумя источниками теплоты, не зависит от свойств рабочего вещества, с помощью которого этот цикл осуществляется.

Рассмотрим два тепловых двигателя, работающих между одними и теми же горячим и холодным источниками, но с разными рабочими веществами. Оба двигателя работают по обратимым циклам Карно. Пусть каждый из тепловых двигателей отбирает от горячего источника за цикл одно и тоже количество тепла, равное . Этого всегда можно добиться, т. к. КПД теплового двигателя не зависит от количества рабочего вещества. Если задано количество рабочего вещества, участвующего в цикле в одном из двигателей, то всегда можно подобрать количество рабочего вещества в другом двигателе таким, чтобы количество теплоты, отбираемое первым и вторым двигателями было одинаковым, т. е. (см. 2.11.1). Тогда КПД этих двигателей будут равны:

(2.12.1)

(2.12.2)

Доказательство теоремы будем вести от противного. Предположим, что КПД этих двигателей не равны, к примеру, пусть . На основании формул (2.12.1–2.12.2) это означает, что первый двигатель за цикл производит большую работу и отдает холодному источнику меньше тепла, чем второй двигатель, т. е. при и Так как циклы обоих двигателей обратимы, включим первый двигатель в прямом, а второй – в обратном направлениях (рис. 38).

Р и с. 38

Тогда работа, производимая первым двигателем, согласно формуле (2.9.6)

(2.12.3)

а работа, потребляемая от первого двигателя вторым,

(2.12.4)

Просуммируем левые и правые части равенств (2.12.3–2.12.4). В результате будем иметь:

(2.12.5)

так как и

Таким образом, в результате совместной работы двух двигателей состояние горячего источника не изменилось (первый двигатель за цикл отнял у него количество тепла , второй двигатель за цикл вернул такое же количество тепла), холодный же источник отдал за цикл количество тепла и за счет этого тепла, согласно формуле (2.12.5), совершена положительная работа.

Этот вывод противоречит второму закону термодинамики в формулировке Кельвина. Поэтому предположение, что неверно.

Остается предположить, что . В этом случае, включив второй двигатель в прямом, а первый – в обратном направлении, и, проведя аналогичные рассуждения, придем к выводу, что возможен вечный двигатель второго рода. Следовательно, и это предположение неверно. Остается единственный вариант Таким образом, теорема Карно доказана.

Из этой теоремы следует, что формула (2.11.9), полученная для идеального газа, справедлива для любых рабочих веществ, осуществля-ющих обратимый цикл Карно.

Вторая теорема Карно. КПД необратимого цикла Карно всегда меньше обратимого цикла Карно, осуществляемого между одними и теми же источниками теплоты, имеющими постоянные, но разные температуры.

Для доказательства воспользуемся формулой (2.11.9):

(2.12.6)

Рассмотрим прямой обратимый цикл Карно. Как мы знаем, чтобы в прямом цикле рабочее вещество обратимо получало тепло и расширялось по изотерме 12 (рис. 37), его температура должна быть на бесконечно малую величину меньше температуры горячего источника , т. е.

(2.12.7)

 

Чтобы рабочее вещество обратимо отдавало тепло при сжатии (на изотерме 34), его температура должна быть на бесконечно малую величину больше температуры холодного источника , т. е.

(2.12.8)

Подставляя выражения (2.12.7–2.12.8) в (2.12.6) и пренебрегая бесконеч-но малыми, получим КПД обратимого цикла Карно равен

. (2.12.9)

Для необратимого прямого цикла Карно разности между температурами источников теплоты и рабочего вещества имеют конечное значение:

, (2.12.10)

. (2.12.11)

При этом интервал температур рабочего вещества сужается (поскольку ), что приводит, естественно, к уменьшению КПД цикла Карно. Подставляя (2.12.10–2.12.11) в (2.12.6), получаем, что КПД необратимого цикла Карно

. (2.12.12)

Сравнивая соотношения (2.12.9) и (2.12.12), заключаем, что

(2.12.13)

Неравенство (2.12.13) получено с учетом одной только внешней необратимости цикла Карно – конечной разности температур между рабочим веществом и источником теплоты. В реальных циклах имеются и внутренние необратимости циклов: процесс трения (при этом часть полезной работы за цикл тратится на трение, что уменьшает КПД цикла), отсутствие механического равновесия (в этом случае давление газа на конечную величину больше или меньше внешнего давления среды) и другие. Все эти необратимости в цикле Карно приводят к уменьшению полезной работы, а, значит, к еще большему усилению неравенства (2.12.13). Следовательно, и вторая теорема Карно доказана.

Третья теорема Карно. Обратимый цикл Карно имеет наибольший КПД по сравнению с любыми обратимыми или необратимыми циклами, в которых наибольшая и наименьшая температуры равны соответственно температуре горячего источника и температуре холодного источника цикла Карно.

Рассмотрим произвольный обратимый цикл, в котором температура рабочего вещества изменяется произвольным образом. В этом случае его невозможно провести обратимо, располагая только двумя источниками тепла с постоянными температурами. Если в начальном состоянии температура рабочего вещества и будет отличаться от температуры источника на бесконечно малую величину, то при дальнейшем изменении температуры рабочего вещества она может оказаться больше (или меньше) температуры источника тепла на конечную величину, что приведет к необратимому процессу теплопроводности и сам процесс станет необратимым. Поэтому для того, чтобы произвольный цикл был обратим, необходимо располагать бесконечно большим числом источников тепла, температуры которых отличаются на бесконечно малую величину.

Введение в теоретическую схему множества источников тепла производится для произвольного цикла следующим образом (рис. 39):

Р и с. 39

Проведем через этот обратимый цикл адиабаты, бесконечно близко расположенные друг к другу. При этом линии и процесса разобьются на бесконечно малые отрезки, через середины которых проведем изотермы, которые соединят ближайшие адиабаты. В результате таких манипуляций весь цикл разобьется бесконечно узкими циклами Карно. На каждом -м цикле рабочее вещество получает количество тепла от -го горячего источника, находящегося при температуре и отдает количество тепла -му холодному источнику, имеющему температуру . Совокупность элементарных циклов Карно вполне эквивалентна первоначальному произвольному циклу. В самом деле, поскольку каждая из адиабат, исключая две крайние, проходится в совокупности дважды и при этом в разных направлениях, суммарная работа цикла при замене его элементарными циклами Карно остается неизменной. Количество же тепла , получаемое процессом на линии , равно суммарному количеству тепла, получаемому в элементарных изотермах цикла Карно на том же пути , т. е.

, (2.12.14)

а отдаваемая теплота на линии будет равна:

. (2.12.15)

Таким образом, при бесконечно большом числе источников тепла, с которыми рабочее вещество обменивается теплом, произвольный цикл становится обратимым. При этом его КПД

(2.12.16)

где и определяются формулами (2.12.14–2.12.15).

КПД элементарного -го цикла Карно можно записать в виде:

(2.12.17)

Откуда находим

(2.12.18)

Обозначим через и соответственно наибольшую и наименьшую температуры в произвольном обратимом цикле, т. е. и Так как и , то что можно переписать в виде:

. (2.12.19)

Просуммируем левую и правую части равенства (2.12.18). В результате будем иметь

. (2.12.20)

В правой части последнего равенства заменим на меньшую величину От этого сумма может только уменьшиться, т. е.

. (2.12.21)

Подставляя в формулу (2.12.16) вместо меньшую величину , получим

(2.12.22)

Таким образом, КПД произвольного обратимого цикла не может быть больше КПД обратимого цикла Карно, протекающего между наибольшей температурой и наименьшей температурой этого произвольного цикла.

Если произвольный цикл необратим, то на основании второй теоремы Карно неравенство (2.12.22) еще более усилится, т. е.

(2.12.23)

Фундаментальное значение доказанной теоремы состоит в том, что она устанавливает наибольший предел КПД тепловых двигателей, к которому должен стремиться инженер-теплотехник в своей исследова-тельской работе.

В заключение этого параграфа отметим, что обратимый цикл Карно с точки зрения количества необходимых источников теплоты является предельно экономным: для его осуществления достаточно всего лишь двух источников тепла с постоянными, но разными температурами, так как подвод теплоты к рабочему веществу от горячего источника и отдача теплоты от рабочего вещества холодному источнику происходят по изотермам.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-10; Просмотров: 2895; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.052 с.)
Главная | Случайная страница | Обратная связь