Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Атавистические пороки развития



 

Различного рода нарушения эмбриогенеза могут привести к формированию у высокоорганизованных организмов и человека таких признаков, которые при нормальных условиях у них не встречаются, но присутствуют у более или менее отделенных предков. Такие признаки называют атавизмами. Если они снижают жизнеспособность и проявляются как морфологические аномалии, то их называют атавистическими или анцестральными (от франц. ancetre — предок) пороками развития.

По механизмам формирования различают три варианта атавизмов. Наиболее часто встречаются атавизмы, связанные с недоразвитием органов на тех этапах морфогенеза, когда они рекапитулировали предковое состояние. К примерам аномалий такого рода относятся двух- и трехкамерное сердце, гипоплазия, или недоразвитие диафрагмы, срединная расщелина твердого нёба, или «волчья пасть», и др. Атавизмы другого рода — результат нарушения редукции — персистирование (сохранение) и дальнейшее развитие эмбриональных структур, также рекапитулирующих морфологию, характерную для предков. К ним относят персистирование боталлова протока и правой дуги аорты (см. § 14.4), наличие ребер, связанных с шейным отделом позвоночника, боковые свищи шеи (см. разд. 14.2.1, 14.3.4). Третий тип атавистических пороков развития возникает в связи с нарушением перемещения органов в онтогенезе, результатом чего является их расположение в тех частях тела, где при нормальных условиях они находятся у предковых форм. У человека широко известны тазовое расположение почек (см. разд. 14.5.1), крипторхизм (неопущение яичника), высокое стояние плечевого пояса и др.

Во всех случаях атавизмов ведущими механизмами их возникновения являются не обратные мутации, приводящие к формированию предкового фенотипа, а, вероятно, мутации регуляторных генов, которые контролируют скорость морфогенеза и запуск процессов, направленных на редукцию органов. Действительно, для формирования любой структуры в многоклеточном организме необходимо слаженное функционирование десятков и даже сотен структурных генов. Одновременное возникновение адекватных друг другу мутаций целого комплекса таких генов крайне маловероятно. Однако на базе генных комплексов, унаследованных от предков, многие предковые структуры закономерно рекапитулируют в ходе эмбриогенеза, а время этих рекапитуляции и редукций контролируется значительно проще и небольшим количеством генов. Мутации таких регуляторных генов гораздо более вероятны.

Аллогенные аномалии и пороки развития

 

Атавистические пороки развития, объясняющиеся ходом предшествующей эволюции, относят к разряду филогенетических пороков. К этой же группе аномалий принадлежат и так называемые аллогенные аномалии. Это врожденные пороки, имеющие в своей основе генетические дефекты. Они встречаются одновременно у ряда родственных организмов и являются выражением закона гомологических рядов.

Н.И. Вавилова 1935 г. обратил внимание на то, что растения разных видов и родов, сходные по происхождению, обладают сходными рядами наследственной изменчивости, и объяснил эту закономерность сходством основных характеристик аллелофондов видов, еще недавно претерпевших дивергенцию. Эта закономерность была названа законом гомологических рядов.

Действие закона гомологических рядов распространяется на широкий круг биологических объектов. Попытки сопоставить гомологии генотипа с морфофункцйональными гомологиями не всегда успешны. Действительно, нет уверенности в том, что такое, с точки зрения сравнительной анатомии, бесспорно гомологическое образование, как хорда зародыша человека и личинки асцидии (животного, относящегося к подтипу Личиночно-хордовые Urochordata типа Хордовые), является абсолютно гомологичным и с позиций генетического контроля его морфогенеза. Однако изучение кариотипов цитогенетическим методом с использованием дифференциальной окраски хромосом и последовательности нуклеотидов в молекулах ДНК методом гибридизации (см. § 15.2) у близких и более отделенных видов привело к выводу о том, что закон гомологических рядов распространяется по крайней мере на виды в пределах рода, семейства, отряда, а по многим признакам — ив рамках класса. Так, известно, что ген, ответственный за синтез фактора VIII в системе свертывания крови, расположен в Х-хромосоме не только у человека, но и у приматов и даже у собак. Поэтому и у этих видов животных гемофилия встречается преимущественно у самцов, наследуясь так же, как и у человека.

В природе хорошо известен ген альбинизма, гомологичный у всех млекопитающих, а также и у других классов позвоночных. Среди млекопитающих распространен аутосомно-доминантный ген ахондроплазии, или хондродистрофической карликовости, нарушающий рост 70 длинных трубчатых костей. В морфогенезе мягких тканей морды млекопитающих и лица человека имеется срастание двух половин верхней губы за счет избирательной клеточной адгезии. У ряда травоядных животных, питающихся грубыми злаками или колючими ветками (грызуны, зайцы, верблюды), срастание верхней губы нерационально. В процессе естественного отбора у них закрепились адаптивные мутации, нарушающие клеточную адгезию верхней губы. У человека такое нарушение называют заячьей губой.

У людей аллогенные аномалии встречаются очень часто. Даже такой генетический дефект, как синдром Дауна, является аллогенной аномалией: известны случаи рождения детенышей гориллы с трисомией хромосомы, соответствующей 21-й паре хромосом человека. Симптоматика такой трисомии соответствует клинике синдрома Дауна у человека.

Точная диагностика и изучение механизмов возникновения аллогенных состояний представляют большой интерес и практически важны потому, что дают возможность использования животных с соответствующими признаками в качестве экспериментальных моделей для изучения клиники и лечения их у человека.

Организм как целое в историческом

И индивидуальном развитии.

Соотносительные преобразования органов

 

Рассмотренные выше филогенетические преобразования отдельных биологических структур протекают в эволюционирующих группах организмов как целостных системах. Устойчивые взаимозависимости органов и систем, проявляющиеся в филогенезе, называют координациями.

Механизмы соотносительных преобразований биологических структур различны, в связи с чем выделяют три их группы: биологические, динамические и топографические.

Биологические координации наблюдаются между структурами, непосредственно не связанными ни по функциям, ни по месту положения. Основным связующим звеном между ними являются адаптации к определенным условиям обитания. Так, у большинства эндопаразитов (см. § 18.6) сильно развиты половая система и органы прикрепления к телу хозяина, но при этом недоразвиты органы чувств и опорно-двигательный аппарат. Млекопитающие, обитающие на деревьях, обычно имеют стереоскопическое зрение и сильно развитый мозжечок. Позвоночные, которые дышат кислородом, растворенным в воде, имеют хвостовой плавник, жабры, слабо развитый передний мозг и содержат гемоглобин, способный связываться с кислородом при низком его парциальном давлении в среде. Все позвоночные, имеющие матку, обладают также совершенной системой терморегуляции.

Динамические координации выражаются во взаимном соответствии структур, связанных функционально. Тесные динамические координации имеются, например, между органами кровеносной и дыхательной систем. Так, животные, дышащие легкими, имеют трех- или четырехкамерное сердце и два круга кровообращения. Степень развитости нервных центров всегда соответствует интенсивности функционирования иннервируемых органов. Например, строение органа обоняния и обонятельные доли мозга у млекопитающих высоко развиты, в то время как у птиц примитивное строение периферической части обонятельного анализатора соответствует малым размерам обонятельных долей мозга. Это связано с тем, что в ориентации млекопитающих обоняние играет первостепенную роль, а для птиц оно не имеет большого значения.

Топографические координации проявляются между структурами, связанными друг с другом пространственно. Так, для каждого типа животного царства характерен своеобразный общий план строения, выражающийся в определенном взаимном расположении основных органов и систем. Например, у всех представителей типа Хордовые на спинной стороне тела расположена нервная трубка, под ней лежат хорда, пищеварительная трубка и брюшной кровеносный сосуд, а по бокам тела — производные мезодермы (см. разд. 13.5.4).

Все типы координации характеризуются высокой степенью устойчивости. Так, хордовые животные, известные с конца протерозойской эры, сохранили неизменными общий план строения до настоящего времени, на протяжении более 500 млн. лет. Феномен паразитизма возник значительно раньше появления хордовых, и поэтому комплекс адаптации к паразитическому образу жизни (см. § 18.6) является еще более древним. Длительно существуют и другие, более частные координации, возникающие вместе с появлением новых таксономических или экологических групп организмов.

Высокая устойчивость филогенетических координации обеспечивается целостностью онтогенеза каждой конкретной особи, развитие всех биологических структур которой протекает в строгом взаимном соответствии. Такое соответствие структур развивающегося организма в онтогенезе называют онтогенетическими корреляциями. Различают геномные, эргонтические и морфогенетические корреляции.

Геномные корреляции обеспечиваются целостностью генетической конституции развивающегося организма. Ведущими механизмами геномных корреляций являются генный баланс генотипа, сцепленное наследование генов, различные формы взаимодействия генов, а также плейотропность. Так, генные системы, регулирующие процессы пролиферации и избирательной гибели клеток на различных этапах органогенеза (см. разд, 8.2.1, 8.2.4), приводят к аллометрическому росту органов (см. разд. 8.3.3), благодаря чему появляются, например, удлиненный клюв, шея и задние конечности у большинства болотных птиц, длинная шея и ноги у жирафа, а также отличающиеся друг от друга пропорции тела у мужчин и женщин.

Морфогенетические корреляции возникают между органами, пространственно связанными между собой. Они основаны либо на феномене эмбриональной индукции (см. разд. 8.2.6), либо на общности эмбриональных закладок органов. Эти корреляции проявляются уже на ранних стадиях онтогенеза, когда еще отсутствуют функциональные связи между формирующимися органами. Так, зачаток хорды обусловливает развитие нервной трубки на спинной стороне зародыша и дифференцировку скелетогенной ткани внутренних частей сомита — склеротома в хрящ или кость, а глазной бокал (вырост переднего мозга) — формирование хрусталика при морфогенезе глаза.

Примером развития ряда структур из одного общего зачатка является формирование у млекопитающих и человека из закладок 1-й и 2-й пар жаберных дуг первичных челюстей, подъязычной кости, части хрящей гортани, шиловидного отростка черепа и трех слуховых косточек. При нарушении развития закладок жаберных дуг обычно образуется комплекс аномалий указанных структур, называемый аномаладом первых жаберных дуг.

Эргонтические корреляции обусловлены функциональной взаимозависимостью органов и частей организма. Они возникают на более поздних стадиях развития, когда органы начинают функционировать, и проявляются, например, в соответствии между степенью развитости мышцы, костных выступов, к которым она прикрепляется, и интенсивностью ее кровоснабжения. К такого рода корреляциям относят также соответствие вторичных половых признаков развитию гонад.

Ведущие корреляции в онтогенезе — геномные. В конечном счете именно они лежат в основе других корреляций, значение которых на протяжении онтогенеза меняется. Это связано с первичностью изменений генотипа в процессе филогенеза.

Система корреляций и сама подвергается эволюционным преобразованиям. В процессе эволюции видоизменяются вначале более частные корреляции, в то время как наиболее общие могут воспроизводиться в конкретных онтогенезах очень длительное время. В результате в ходе исторического развития происходит как отбор наиболее общих корреляций, имеющих значение при любых перестройках организма и в различных условиях обитания (общий план строения, соответствие между степенью развитости нервного центра и иннервируемыми органами), так и накопление локальных корреляций частного значения, формирующихся у организмов разных видов и отражающих специфику их образа жизни.

Корреляции общего значения обусловливают преемственность формообразовательных процессов в череде поколений организмов данного типа организации, а частные корреляции — многообразие конкретных форм жизни.

Между филогенетическими координациями и онтогенетическими корреляциями имеется теснейшая связь. Очевидно, что корреляции существуют и воспроизводятся в поколениях благодаря тому, что на протяжении предшествующей эволюции органов они преобразовывались скоординированно. С другой стороны, филогенетические координации в последующей эволюции организмов будут реализовываться благодаря воспроизведению онтогенетических корреляций в ходе индивидуального развития конкретных особей. Таким образом, в виде соотношения корреляций и координации проявляется диалектическое единство онто- и филогенеза как целостного процесса исторического развития живого.

Сопоставление конкретных форм соотносительных преобразований органов приводит к выводу о том, что морфогенетические корреляции и топографические координации точно так же, как эргонтические корреляции и динамические координации, взаимно обусловливают друг друга. В паре геномные корреляции — биологические координации также обнаруживается соответствие.

Осознание целостности и взаимообусловленности индивидуального и исторического развития необходимо врачу в связи с тем, что соотносительное преобразование биологических структур лежит в основе нормального развития организма человека, а нарушение даже одного незначительного компонента развивающейся системы может повлечь за собой возникновение целого комплекса нарушений в других ее элементах. С этим связано то, что практически все врожденные пороки развития, а также многочисленные генные болезни характеризуются не отдельными патологическими признаками, а синдромами, представляющими собой комплексы симптомов, связанных между собой процессом формирования.

Сердце у всех позвоночных закладывается на ранних этапах развития кпереди от глотки под челюстной дугой. В его морфогенезе участвует глотка как эмбриональный индуктор. Если это свойство глотки нарушено, тсгсердце может задержаться на двух- и трехкамерном уровне развития, при этом может быть нарушено и его перемещение в загрудинную область — шейная эктопия сердца (см. § 14.4). Эти явления — результат нарушений морфогенетических корреляций в развитии шейной области. Часто этот порок развития сопровождается нарушением отходящих от сердца сосудов (персистирование общего эмбрионального ствола, двух дуг аорты и т.д.) и недоразвитостью легких.

В возникновении данных аномалий ведущим механизмом выступает нарушение эргонтических корреляций сердце — сосуды — легкие. Первичным нарушением в описанном комплексе признаков является, вероятно, нарушение генетического контроля эмбриональной индукции, описанное ранее (см. разд. 8.2.6). Таким образом, приведенный пример иллюстрирует взаимоотношение разных форм соотносительных преобразований органов при формировании сложного комплекса патологических признаков, имеющих в целом атавистическую природу.

Примером нарушения чисто геномных корреляций является синдром Дауна. Увеличение доз генов 21-й хромосомы или ее части приводит к формированию тяжелой умственной отсталости, ослаблению тонуса мышц, аномалиям мозгового черепа и мягких частей лица, светлой пигментации волос и глаз.

Кроме филогенетических координации, подкрепляемых в каждом поколении онтогенетическими корреляциями, целостность развивающегося организма отражают и такие соотносительные преобразования органов, как субституция и гетеробатмия.

Субституция — это такое эволюционное преобразование, при котором один орган замещается другим, выполняющим обычно ту же функцию с большей интенсивностью. При этом наблюдается развитие этих органов в разных направлениях. Один обычно подвергается редукции, другой — эволюционирует прогрессивно. Так, хорда замещается позвоночником и превращается в рудиментарное образование, а первичные хрящевые челюсти позвоночных заменяются вторичными костными (см. разд. 14.2.1). Это примеры гомотопной субституции, когда новый орган возникает на месте старого. При гетеротопной субституции заменяющий орган находится на новом месте. Так, функцию печени как органа кроветворения берет на себя красный костный мозг. Выделительная функция выполняется у рыб и земноводных туловищной почкой, а у пресмыкающихся и млекопитающих — тазовой.

Гетеробатмия — это такое эволюционное преобразование, при котором в одной группе организмов обнаруживается разный уровень эволюционной продвинутое™ и специализации разных частей одного и того органа, разных органов одной и той же системы или разных частей организма. Примером может являться человек, головной мозг которого за короткое время антропогенеза претерпел колоссальные морфофизиологические изменения, в то время как пищеварительная система соответствует уровню развития других приматов.

Гетеробатмия, наблюдающаяся внутри одной и той же системы органов в разных филогенетических группах, обусловливает феномен компенсации функций, благодаря которому одни и те же экологические задачи решаются разными способами. Так, грызуны и копытные млекопитающие питаются одинаковой растительной пищей, но у первых наиболее выраженные адаптации к растительноядности проявляются в строении зубов и морфофизиологии слюнных желез, в то время как вторые на фоне примитивной зубной системы имеют высокоспециализированные желудок и кишечник. Явления гетеробатмии и, следовательно, компенсации функций имеют огромное эволюционное значение в связи с тем, что в организме, даже вступившем на путь узкой специализации, всегда остаются органы и системы относительно мало специализированные, которые при меняющихся условиях могут еще прогрессивно развиваться, раскрывая перед такими филогенетическими группами новые адаптивные возможности.

 


Поделиться:



Популярное:

  1. I. С учетом условия развития, особенности инфицирования и состояния иммунитета
  2. II. Виды мышления, стадии его развития.
  3. III этап. Психологическая диагностика уровня развития ребенка. Коррекционно-развивающие занятия, способствующие успешной социализации ребенка.
  4. III. Оценка физического развития
  5. IV. Государственная политика в области управления и развития рынка недвижимости
  6. А третья мамочка может воспользоваться этой ситуацией для развития творческих способностей девочки. Она воспримет это, как хорошую идею, и предложит разрисовать фломастерами джинсовые брючки.
  7. Аварии на химико-технологических объектах: характеристика разрушительного воздействия, типовая модель развития аварии, поражающие факторы.
  8. Алгоритм оценки степени риска развития пролежней
  9. Анализ современного состояния АПК в России: задачи и экономическая стратегия развития
  10. Анализ тенденций развития отрасли.
  11. Анализ тенденций развития уровня техники
  12. Анализа особенностей культурно-исторического развития цивилизации.


Последнее изменение этой страницы: 2016-04-11; Просмотров: 1511; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь