Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Несобственный интеграл с бесконечным пределом (ами) интегрирования
Иногда такой несобственный интеграл еще называют несобственным интегралом первого рода. В общем виде несобственный интеграл с бесконечным пределом чаще всего выглядит так: . В чем его отличие от определенного интеграла? В верхнем пределе. Он бесконечный: . Реже встречаются интегралы с бесконечным нижним пределом или с двумя бесконечными пределами: . Мы рассмотрим самый популярный случай . Техника работы с другими разновидностями – аналогична, и в конце параграфа будет ссылка на такие примеры. Всегда ли существует несобственный интеграл? Нет, не всегда. Подынтегральная функция должна быть непрерывной на промежутке Справка : строго говоря, утверждение неверно: если есть разрывы функции, то в ряде случаев можно разбить полуинтервал на несколько частей и вычислить несколько несобственных интегралов. Для простоты здесь и далее я буду говорить, что несобственного интеграла не существует. Изобразим на чертеже график подынтегральной функции . Типовой график и криволинейная трапеция для данного случая выглядит так:
Здесь всё хорошо, подынтегральная функция непрерывна на полуинтервале , а, значит, несобственный интеграл существует. Обратите внимание, что криволинейная трапеция у нас – бесконечная (не ограниченная справа) фигура. 1) Первое, мысль, которая приходит в голову: «раз фигура бесконечная, то », иными словами, площадь тоже бесконечна. Так быть может. В этом случае говорят, что, что несобственный интеграл расходится. 2) Но. Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: . Может ли так быть? Запросто. Во втором случае несобственный интеграл сходится. В каких случаях несобственный интеграл расходится, а в каком сходится? Это зависит от подынтегральной функции , и конкретные примеры мы очень скоро рассмотрим. А что будет, если бесконечная криволинейная трапеция расположена ниже оси? В этом случае, несобственный интеграл (расходится) либо равен конечному отрицательному числу. Несобственный интеграл может быть отрицательным. Важно! Когда Вам для решения предложен ЛЮБОЙ несобственный интеграл, то, вообще говоря, ни о какой площади речи не идет и чертежа строить не нужно. Ваша задача найти ЧИСЛО либо доказать, что несобственный интеграл расходится. Геометрический смысл несобственного интеграла я рассказал только для того, чтобы легче было понять материал. Коль скоро, несобственный интеграл очень похож на определенный интеграл, то вспомним формулу Ньютона- Лейбница: . На самом деле формула применима и к несобственным интегралам, только ее нужно немного модифицировать. В чем отличие? В бесконечном верхнем пределе интегрирования: . Наверное, многие догадались, что это уже попахивает применением теории пределов, и формула запишется так: . В чем отличие от определенного интеграла? Да ни в чем особенном! Как и в определенном интеграле, нужно уметь находить первообразную функцию (неопределенный интеграл), уметь применять формулу Ньютона-Лейбница. Единственное, что добавилось – это вычисление предела. У кого с ними плохо, изучите урок Пределы функций. Примеры решений, ибо лучше поздно, чем в армии. Рассмотрим два классических примера: Пример 1 Вычислить несобственный интеграл или установить его расходимость. Для наглядности я построю чертеж, хотя, еще раз подчеркиваю, на практике строить чертежи в данном задании не нужно. Подынтегральная функция непрерывна на полуинтервале , значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом. Применение нашей формулы и решение задачи выглядит так: То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности. В рассмотренном примере у нас простейший табличный интеграл и такая же техника применения формулы Ньютона-Лейбница, как в определенном интеграле. Но применятся эта формула под знаком предела. Вместо привычной буквы «динамической» переменной выступает буква «бэ». Это не должно смущать или ставить в тупик, потому что любая буква ничем не хуже стандартного «икса». Если Вам непонятно почему при , то это очень плохо, либо Вы не понимаете простейшие пределы (и вообще не понимаете, что такое предел), либо не знаете, как выглядит график логарифмической функции. Во втором случае посетите урок Графики и свойства элементарных функций. При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций! Чистовое оформление задания должно выглядеть примерно так: “ ! При оформлении примера всегда прерываем решение, и указываем, что происходит с подынтегральной функцией. Этим мы идентифицируем тип несобственного интеграла. Если Вам встретится интеграл вроде , то с вероятностью, близкой к 100%, можно сказать, что это опечатка. Здесь подынтегральная функция не является непрерывной на промежутке интегрирования , она терпит разрыв в точке . Теоретически и практически допустимо вычислить два несобственных интеграла на полуинтервалах и , а потом их сложить, но со здравой точки зрения такая вещь выглядит довольно абсурдно. Опечатка. Иногда вследствие той же опечатки несобственного интеграла может вообще не существовать, так, например, если в знаменатель вышеуказанного интеграла поставить квадратный корень из «икс», то часть интервала интегрирования вообще не войдёт в область определения подынтегральной функции. Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 586; Нарушение авторского права страницы