|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Несобственный интеграл с бесконечным пределом (ами) интегрирования
Иногда такой несобственный интеграл еще называют несобственным интегралом первого рода. В общем виде несобственный интеграл с бесконечным пределом чаще всего выглядит так: Реже встречаются интегралы с бесконечным нижним пределом Мы рассмотрим самый популярный случай Всегда ли существует несобственный интеграл Справка : строго говоря, утверждение неверно: если есть разрывы функции, то в ряде случаев можно разбить полуинтервал на несколько частей и вычислить несколько несобственных интегралов. Для простоты здесь и далее я буду говорить, что несобственного интеграла не существует. Изобразим на чертеже график подынтегральной функции
Здесь всё хорошо, подынтегральная функция 1) Первое, мысль, которая приходит в голову: «раз фигура бесконечная, то 2) Но. Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: В каких случаях несобственный интеграл расходится, а в каком сходится? Это зависит от подынтегральной функции А что будет, если бесконечная криволинейная трапеция расположена ниже оси? В этом случае, несобственный интеграл Несобственный интеграл может быть отрицательным. Важно! Когда Вам для решения предложен ЛЮБОЙ несобственный интеграл, то, вообще говоря, ни о какой площади речи не идет и чертежа строить не нужно. Ваша задача найти ЧИСЛО либо доказать, что несобственный интеграл расходится. Геометрический смысл несобственного интеграла я рассказал только для того, чтобы легче было понять материал. Коль скоро, несобственный интеграл очень похож на определенный интеграл, то вспомним формулу Ньютона- Лейбница: В чем отличие от определенного интеграла? Да ни в чем особенном! Как и в определенном интеграле, нужно уметь находить первообразную функцию Рассмотрим два классических примера: Пример 1 Вычислить несобственный интеграл или установить его расходимость. Для наглядности я построю чертеж, хотя, еще раз подчеркиваю, на практике строить чертежи в данном задании не нужно.
Подынтегральная функция Применение нашей формулы
То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности. В рассмотренном примере у нас простейший табличный интеграл и такая же техника применения формулы Ньютона-Лейбница, как в определенном интеграле. Но применятся эта формула под знаком предела. Вместо привычной буквы Если Вам непонятно почему При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций! Чистовое оформление задания должно выглядеть примерно так: “ ! При оформлении примера всегда прерываем решение, и указываем, что происходит с подынтегральной функцией. Этим мы идентифицируем тип несобственного интеграла. Если Вам встретится интеграл вроде Иногда вследствие той же опечатки несобственного интеграла может вообще не существовать, так, например, если в знаменатель вышеуказанного интеграла поставить квадратный корень из «икс», то часть интервала интегрирования вообще не войдёт в область определения подынтегральной функции. Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 586; Нарушение авторского права страницы