Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тема 1. Элементы линейной алгебры
Прямоугольная таблица чисел вида называется матрицей. Числа, из которых состоит матрица, называются ее элементами. Элементы матрицы нумеруются двумя индексами, первый из которых обозначает номер строки, а второй- номер столбца.Число строк и столбцов матрицы называется ее порядком : . Матрица, число строк и столбцов которой совпадает, называется квадратной. Для матриц определены следующие линейные операции: сложение, умножение матрицы на число, умножение матриц. Складываются матрицы поэлементно, поэтому можно найти сумм у только матриц одинакового порядка. При умножении матрицы на действительное число каждый элемент этой матрицы умножается на это число. Произведением матрицы А порядка на матрицу В порядка называется матрица С порядка , каждый элемент которой представляет собой сумму произведений элементов i-той строки матрицы А на соответствующие элементы j-го столбца матрицы В: . Следует обратить внимание, что умножить можно только те матрицы, в которых число столбцов в первой матрице равно числу строк во второй матрице. Также следует иметь в виду, что в общем случае умножение матриц не коммутативно: . Рекомендуемая литература. [2] стр. 56-59, [1] стр. 263-265, [8] стр. 19-26. Определителем квадратной матрицы А называется число detA , поставленное в соответствие этой матрице по определенному закону. Для квадратных матриц второго порядка: . Определители более высоких порядков можно вычислить согласно теореме: Теорема. Определитель квадратной матрицы А порядка n равен сумме произведений элементов некоторой строки (или столбца) матрицы на их алгебраические дополнения: Рекомендуемая литература. [2] стр. 77-83, [1] стр. 263-265, [8] стр. 27-30 Обратной матрицей к квадратной матрице А называется такая матрица , что , где - единичная матрица соответствующего порядка. Теорема. Если , то . Следует обратить внимание на расположение алгебраических дополнений в обратной матрице. Рекомендуемая литература. [2] стр. 64-66, [1] стр. 272-274, [8] стр. 41. Рангом матрицы называется наибольший порядок ее отличного от нуля минора (или число линейно независимых строк или столбцов матрицы). Минором порядка k произвольной матрицы А называется определитель, составленный из элементов матрицы А, стоящих на пересечении любых ее k строк и k столбцов. Существуют два метода нахождения ранга матрицы: метод окаймляющих миноров (состоящий в последовательном вычислении миноров с первого порядка и до тех пор, пока это возможно, либо пока все миноры порядка k+1 не окажутся =0, тогда rangA=k), либо метод элементарных преобразований (матрица приводится к ступенчатому виду, и тогда ранг равен числу ненулевых строк матрицы). Рекомендуемая литература. [2] стр. 69-71, [1] стр. 272-274, [8] стр. 31-32. Системой m линейных алгебраических уравнений с n неизвестными называется система вида -действительные числа, называемые коэффициентами системы, а -действительные числа, называемые свободными членами. Система называется совместной, если существует хотя бы одно ее решение, то есть если найдется такой набор чисел, что при подстановке этих чисел вместо соответствующих переменных, каждое уравнение системы обращается в тождество. Возможны три случая: - система имеет единственное решение; - система имеет бесконечно много решений. Теорема Кронекера- Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранги ее основной и расширенной матриц равны. Основной матрицей системы называется матрица ее коэффициентов, расширенной- матрица, включающая помимо коэффициентов столбец свободных членов. Рекомендуемая литература. [2] стр. 5-17, [1] стр. 268-270. Существуют три основных метода решения СЛАУ. 1) Матричный метод, основанный на матричной записи системы . Вектор-столбец решения находится как . Ввиду громоздкости вычислений применяется в основном в теории. 2) Метод Крамера, заключается в вычислении основного определителя системы и определителей , в которых i-тый столбец заменен столбцом свободных членов. Решение системы в этом случае: . Рекомендуемая литература. [2] стр. 88-89. 3 ) Метод Гаусса, или метод последовательного исключения переменных. Система уравнений, а точнее, ее расширенная матрица путем элементарных преобразований (замена уравнений местами, умножение уравнения на число, прибавление к одному уравнению системы другого, умноженного на некоторое число) приводится к ступенчатому виду. Далее из каждого уравнения, начиная с последнего, выражается соответствующая переменная. Метод Гаусса - самый универсальный из предложенных, позволяет решать практически все системы. Рекомендуемая литература. [2] стр. 89-92, [8] стр. 34-41. Однородные системы линейных уравнений - это системы, в которых столбец свободных членов равен 0. Однородная система уравнений совместна всегда, так как она имеет нулевое решение. Теорема. Однородная СЛУ имеет ненулевое решение тогда и только тогда, когда ее ранг меньше числа неизвестных. Система решений называется фундаментально й, если любое решение СЛУ выражается в виде ее линейной комбинации. Рекомендуемая литература. [2] стр. 93-100, [8] стр. 42-45.
Популярное:
|
Последнее изменение этой страницы: 2016-05-30; Просмотров: 465; Нарушение авторского права страницы