Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Современные представления обмена железа в организме и эритроидной клетке и его нарушения.
Из 4 — 5 г железа, содержащегося в организме, 1/4 составляет резервное железо , а остальное — функционально активно .Из этого количества в состав гемоглобина эритроцитов входит 62-70%, 5-10% содержится в миоглобине, остальное — в тканях, где оно участвует во многих метаболических процессах: в составе металлосодержаших энзимов обеспечивает митохондриальный транспорт электронов, синтез ДНК и деление клеток, метаболизм катехоламинов (гормонов мозгового вещества надпочечников), детоксикационные механизмы, т.е. снижающие активность токсических веществ, поддерживая, в частности, концентрацию цитохрома Р450. Поэтому дефицит железа в организме человека понижает его физическую активность и работоспособность. В организме человека происходит интенсивный обмен железа, оно постоянно перемещается из мест его накопления к местам использования и обратно. Так, эритропоэз ежесуточно требует от 20 до 25 мг железа. Почти все это количество железа костный мозг получает за счет его повторного использования. Только около 1 мкг железа вновь ежедневно всасывается в кишечнике, пополняя потери с калом, мочой, потом и слущиванием кожи. У молодых женщин потери железа больше (менструация, беременность). Fe++ поступает в эритробласты с белком плазмы — трансферрином, гликопротеином (MB 76000), мигрирующим при электрофорезе белков плазмы вместе с В1-глобулинами. Плазма содержит от 1, 8 до 2, 6 мг/л трансферрина. Поскольку 1 мг белка связывает 1, 25 мкг Fe++, то в общем объеме плазмы содержится около 3 мг железа. В норме лишь 1/3 трансферрина плазмы насыщена железом. Дополнительное количество железа, которое может связываться с ненасыщенным железом трансферрином плазмы, определяет ненасыщенную железосвязывающую способность крови. Общее количество железа, которое может быть связано трансферрином, называется общей железосвязывающейспособностью крови(ОЖСК). Концентрация железа в плазме достигает у мужчин 120 мг%, у женщин — 80 мг%. ОЖСК нормальной сыворотки крови составляет 290-380 мг%, с мочой выводится за сутки 60-100 мкг железа. Комплекс трансферрин-железо фиксируется на рецепторах мембраны эритробласта, количество рецепторов уменьшается в ходе созревания эритроидных клеток, исчезая после созревания ретикулоцитов. Поэтому зрелый эритроцит не включает железо. Освобождение железа из комплекса трансферрин-железо обеспечивается энергией АТФ. Молекула трансферрина, отдавшая железо, смещается с мембранного участка молекулами трансферрина, связанными с железом, поскольку их сродство к рецепторам более сильное. Железо, поступившее в эритробласт, используется в митохондриях для синтеза гема и депонируется в эритробласте в виде резерва. В макрофагах печени, костного мозга резервное железо депонируется в молекуле ферритина, состоящей из 24 единиц белка апоферритина, образующих подобие скорлупы, в центре которой аккумулируется железо. Молекулы ферритина, в свою очередь, образуют внутри лизосом большие аморфные нерастворимые агрегаты — гемосидерин. Таким образом, ферритин и гемосидерин — это формы резервного железа в клетках. При освобождении железа из клеточного резерва оно переводится в двухвалентное состояние (благодаря энзиму ксантиноксидазе, аскорбиновой кислоте и др.), соединяется с трансферрином и транспортируется к эритробластам. Абсорбция железа эпителиальными клетками желудочно-кишечного тракта усиливается при увеличении концентрации трансферрина в слизистой кишечника, эритропоэтической активности костного мозга и снижается при увеличении концентрации железа в клетках слизистой оболочки кишечника. Абсорбция Fe++ в кишечнике более эффективна, чем Fe+++ и вещества, поддерживающие двухвалентную форму железа, его растворимость — аскорбиновая кислота, фруктоза, аминокислоты (цистеин, метионин), ускоряют абсорбцию железа. Анемии и оределение и классификацию Анемия (малокровие) — состояние, характеризующееся уменьшением содержания гемоглобина в единице объема крови, чаще при одновременном уменьшении количества эритроцитов. Как анемию квалифицируют состояния, при которых концентрация гемоглобина составляет для мужчин — ниже 130 г/л, для женщин — ниже 120 г/л, беременных — ниже ПО г/л. Классификация анемий (В. Я. Шустов, 1988) 1. Анемии при кровопотерях (постгеморрагические): · 1.1. Острая. · 1.2. Хроническая. 2. Анемии при нарушении кровообразования: · 2.1. Железо-дефицитные: 2.1.1. Нутритивная (у детей). 2.1.2. Ювенильный хлороз. 2.1.3. Анемии беременных и кормящих. 2.1.4. Агастраль-ная, анэнтеральная. · 2.2. Железонасыщенные (сидероахрести-ческие). 2.2.1. Наследственные. 2.2.2. Приобретенные. · 2.3. B12-(фолиево)-дефицитные (мегалобдастные): 2.3.1. Анемия Ад-дисона — Бирмера. 2.3.2. Раковая. 2.3.3. Агастральная. 2.3.4. Анэнтеральная. 2.3.5. Глистная. 2.3.6. При инфекциях. 2.3.7. При энтеропатиях беременных. · 2.4. Гипопластические (апластические): 2.4.1. Наследственные (типа Фанкони, Даймонда—Блекфена). 2.4.2. Приобретенные (типа Эрлиха, от воздействия химических факторов, радиации, медикаментов, при иммунных нарушениях). · 2.5. Метапластическая: 2.5.1. При гемобластозах. 2.5.2. При метастазах рака. 2.5.3. При нарушении кроветворного микроокружения. 3. Анемии при повышенном кроворазрушении (гемолитические): · 3.1. Эритроцитопатии: 3.1.1. Наследственный микросфероцитоз. 3.1.2. Ночная пароксизмальная гемоглобинурия (болезнь Маркиафавы — Микели). · 3.2. Ферментопатии: 3.2.1. Острая и хроническая гемолитические анемии при дефиците глюкозо-6-фосфатдегидрогеназы, фавизм. 3.2.2. Острые гемолитические анемии при дефиците ферментов гликолиза, обмена глютатиона, нуклеотидов. · 3.3. Гемоглобинопатии: 3.3.1. Серповидноклеточная анемия. 3.3.2. Гемоглобинозы С, D и др. 3.3.3. Анемии при нестабильных гемоглобинах — талассемии. · 3.4. Анемии при воздействии антител, гемолизинов, химических веществ и других факторов: 3.4.1. Анемии при действии прямых гемолизинов (отравления гемолитическими ядами, солями тяжелых металлов, разрушение паразитами и пр.). 3.4.2. Анемии аутоиммунные, изоиммунные. 3.4.3. Гемолитическая болезнь плода и новорожденного. Гипо- и апластические анемии. Этиология, патогенез. Характеристика кроветворения и основы лабораторной диагностики. Гипопластическая анемия — заболевание системы крови, характеризующееся угнетением кроветворной функции костного мозга и проявляющееся недостаточным образованием эритроцитов, лейкоцитов и тромбоцитов (пангемоцитопенией) или только одних эритроцитов (парциальная гипопластическая анемия, эритробластофтиз). Основа патологического процесса - нарушение пролиферации и дифференциации клеток костного мозга. Характерным признаком этого заболевания системы крови является полное истощение (аплазия) костного мозга и глубокое нарушение его функции, что сопровождается резко выраженной анемией, лейкопенией и тромбоцитопенией. Недостаточная продукция костным мозгом клеток обусловливает основные механизмы развития заболевания — анемический синдром, инфекционные осложнения в связи с гранулоцитопенией и геморрагический синдром. Основными этиологическими факторами гипопластических анемий являются: ионизирующая радиация; инсектициды; цитостатические препараты; другие лекарственные средства; антитела против клеток костного мозга; вирусные инфекции (вирусный гепатит); наследственные факторы; идиопатическая гипо- и апластические анемии. Картина крови При исследовании периферической крови отмечаются панцитопения, резчайшая анемия с низким ретикулоцитозом, выраженным анизо-пойцилоцитозом. Содержание гемоглобина падает до 15—20 г/л. Лейкопения, тромбоцитопения разной степени. Резкое ускорение СОЭ — до 60—80 мин/ч. Исследование костномозгового кроветворения при апластической анемии обнаруживает картину почти полного опустошения костного мозга Патогенез
Поражение полипотентной стволовой гемопоэтической клетки — важнейший патогенетический фактор апластической анемии. Стволовая клетка является родоначальницей всех кроветворных клеток. При апластической анемии значительно снижается колониеобразующая способность костного мозга, нарушается пролиферация кроветворных клеток, в конечном итоге формируется синдром панцитопении — лейкопения, анемия, тромбоцитопения. Окончательно механизм угнетения активности полипотентной стволовой кроветворной клетки не выяснен. Клиническая картина
Нередко развивается гемосидероз внутренних органов вследствие повышенного разрушения неполноценных эритроцитов, снижения использования железа костным мозгом, нарушения синтеза гема, частых переливаний эритроцитарной массы. Лабораторные данные и инструментальные исследования Диагностические критерии
• Увеличение содержания железа внутри эритрокариоцитов и внеклеточно.
B12-фолиево-дефицитная анемия. Этиология, патогенез, клинические проявления. Характеристика кроветворения и основы лабораторной диагностики. Механизмы взаимодействия витамина B12 и фолиевой кислоты в процессе синтеза эритроидных клеток. B12 (фолиево)- дефицитная анемия или пернициозная анемия (от лат. perniciosus - гибельный, опасный), или мегалобластная анемия или болезнь Аддисона-Бирмера - заболевание, обусловленное нарушением кроветворения из-за недостатка в организме витамина B12. Особенно чувствительны к дефициту этого витамина костный мозг и ткани нервной системы Витамин В12, поступающий в организм с пищей, по предложению Кастла (1930) называют " внешним фактором". В желудке пепсин отщепляет витамин от белка пищи и В12 связывается с R – белками (транскобаламини I и III). Далее комплекс В12-R белки поступает в 12п. кишку, где под действием панкреатических протеаз распадается и В12 транспортируется к внутреннему фактору Кастла. Внутренний фактор Кастла (гликопротемин, м.м. 44кДа). синтезируют париетальные клетки желудка, который затем поступает в дистальную часть 12п. кишки и взаимодействует с осободившимся витамином В12. Этот комплекс с помощью специфических рецепторов адгезируется на эпителий кишечника и абсорбируется в течении нескольких часов. Витамин В12 (90%) в крови транспортируется транскобаламином II (главный транспортный протеин) в печень, гемопоэтические клетки и другие ткани. Запасы витамина В12 в организме достаточно велики (около 2 - 5 мг). В основном он депонируется в печени. В связи с этим дефицит витамина при значительном снижении его поступления и (или) усвоения развивается лишь через 3 - 6 лет. Фолиевая кислота содержится в зеленых листьях растений, фруктах, печени, почках. Запасы фолатов составляют 5-10 мг, минимальная потребность - 50 мкг в день. Всасывается фолиевая кислота на территории тонкого кишечника. Но в отличие от витамина В12, попадая в кровоток, может находиться в свободном и связанном состоянии (с белками крови). В свободном состоянии ее можно обнаружить в кале, моче, поте. Запасы фолиевой кислоты небольшие, дефицит наступает через 3-6 недель, депо фолиевой кислоты - печень. По мере необходимости из печени она поступает в костный мозг. Этиология Различные этиологические факторы могут вызывать дефицит цианокобаламина или фолиевой кислоты (реже комбинированную недостаточность обоих) и развитие мегалобластной анемии. Дефицит цианокобаламина могут обусловить следующие причины: низкое содержание в рационе; вегетарианство; алкоголизм, дефицит внутреннего фактора; гастрэктомия; повреждение эпителия желудка химическими вещества; атрофические процессы в желудке и кишке; повышенная утилизация витамина В12 бактериями при их избыточном росте в кишечнике; глистная инвазия и др. Причинами дефицита фолатов могут быть: 1. Недостаточное поступление - скудный рацион; несбалансированное питание; изменения слизистой оболочки кишечника; резекция тощей кишки и др. 2. Увеличение потребности - беременность 3. Нарушение утилизации - алкоголизм; лекарственные антагонисты фолатов (метотрексат); врожденные нарушения метаболизма фолатов. Патогенез. Роль цианкобаламина и фолиевой кислоты в развитии анемии связана с их участием в широком спектре обменных процессов и реакций в организме. Фолиевая кислота в форме 5, 10 - метилентетрагидрофолата участвует в метилировании дезоксиуридина, необходимого для синтеза тимидина, при этом образуется 5-метилтетрагидрофолат. Цианокобаламин является кофактором метилтрансферазной каталитической реакции, осуществляющей ресинтез метионина и одновременно регенерацию 5-метилтетрагидрофолата в тетрагидрофолат и 5, 10 метилентетрагидрофолат. При недостаточности фолатов и (или) цианкобаламина нарушается в развивающихся гемопоэтичеких клетках образование тимидина и синтез ДНК, что обуславливает фрагментацию ДНК и нарушение клеточного деления. При этом образуются мегалобласты, укороченного срока жизни. Основой развития анемии при дефиците витамина В12 является то, что процессы кроветворения не компенсируют процессов кроверазрушения. Процесс гемоглобинообразования не нарушается, так как в этом процессе В12 и фолиевая кислота участия не принимают. Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 942; Нарушение авторского права страницы