Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Относительные велечины и область их привенения. Расчет.
ОВ – такие вел-ны, кот получены сравнением относительных вел-н, исчисленных ранее или абсол вел-н, т.е. ОВ – выл-ны, выраж колич соотношение между признаками явления. ОВ – рез-т деления (всегда! ) одной вел-ны на другую. Знаменатель дроби, т.е. вел-на с которой сравнивают, называются основанием относительной вел-ны или базисной вел-ной. Чичлитель – вел-на, которая сравнивается, наз текущей или отчетной вел-ной. ОВ показ, во сколько раз отчетная вел-на больше базисной или какую долю от базисной она составляет. В некот случаях ОВ показ сколько единиц одной вел-ны приходится на 100, 1000 или на 10000 ед базисной вел-ны. С пом ОВ выражают темпы роста, прироста, доли. ОВ выраж в коэф, процентах, промилле, продецимилле. Рассчитывают ОВ в сложнонатуральных единицах измерения, напр. плотность насел на 1 км квадратный. Главнейшим св-вом ОВ явл то, что они позвол соизмерить прямонесопоставимые явления.
Виды относительных величин Виды относительных вел-н. 1) ОВ планового задания – отношение вел-ны, устан на планируемый период к вел-не базисного периода. Она расчит до начала года эк процесса и не связана с деят-стью текущего периода. 2) ОВ выполнения плана. Это соотн-е фактического ур-ня текущего периода с планом. 3) ОВ динамики. Это соотн-е достигнутого ур-ня тек периода к ур-ню предыдущего периода. Она характ изменение явл-я во времени, скорость изменеия явл-я, т.е. это темп роста. В завис-сти от хар-ра базы сравнения разл 2 вида относ вел-н динамики. А) Базисная ОВ динамики: когда сравнивают с пост базой сравнения. Б) Цепная вел-на динамики: когда база сравнения переменна, и сравнивают 2 рядом лежащих ур-ня. ОВ динамики = ОВ план зад * вел-ну вып плана 4) ОВ структуры – отношение размеров частей и целого. Оно хар-ет структуру, т.е. состав совок-сти. При их расчёте в кач-ве базы сравнения берут целое, т.е. итог, а в числителе приводят значения показ-лей частей целого. Эти вел-ны рассчит в динамике, позв опред структурные сдвиги в совок-сти. Для хар-ки структурных сдвигов надо рассчитать несколько показ-лей структуры – заряд периодов. На практике эта вел-на наз удельным весом или долей. 5) ОВ координации – отношение частей показ-ля друг к другу. Одну из составных частей целого приним за базу сравнения и выч отношение к ней всех др частей. С пом этой вел-ны опред сколько единиц данной части целого прих на единицы другой части, взятой за базу сравнения. 6) ОВ интенсивности – показ степень распр-я явления в среде или степень насыщенности среды данным явлением. Это всегда сравн-е разноименных вел-н, в числителе показ вел-на явления, распространение которого изучают, а в знаменателе – объем среды, в кот развивается явл-е. 7) ОВ ур-ня эк развития. Это показ-ли вел-ны пр-ва или объем товарооборота на душу населения. 8) ОВ сравнения. Получ как отношение одинак вел-н в разных объектах. При выборе ОВ исходят из требований, предъявляемых к формированию стат совок-сти.
Понятие о статистическом графике, его основные элементы и правила построения. Статистический график - чертеж, на которой при помощи условны» геометрических фигур (линий, точек или других символических знаков) изображаются статистические данные Основные элементы статистического графика: поле графика, графический образ, пространственные и масштабные ориентиры, экспликация графика. Поле графика - место, на котором он выполняется. Это листы бумаги, географические карты, план местности и т. п. Поле графика характеризуется его форматом (размерами и пропорциями сторон). Графический образ - символические знаки, с помощью которых изображаются статистические данные: линии, точки, плоские геометрические фигуры (прямоугольники, квадраты, круги и т. д.). Пространственные ориентиры определяют размещение графических образов на поле графика. Они задаются координатной сеткой или контурными линиями и делят поле графика на части, соответствующие значениям изучаемых показателей. Масштабные ориентиры статистического графика придают графическим образам количественную значимость, которая передается с помощью системы масштабных шкал. Масштаб графика - это мера перевода численной величины в графическую. Чем длиннее отрезок линии, принятой за числовую единицу, тем крупнее масштаб. Масштабная шкала - линия, отдельные точки которой читаются (в соответствии с принятым масштабом) как определенные числа. Шкала графика, может быть прямолинейной и криволинейной. Различают шкалы равномерные и неравномерные. Шкала, как правило, начинается с -0-, а последнее число, наносимое на шкалу, превышает максимальный уровень признака. При построении графика допускается разрыв масштабной шкалы. Экспликация графика - пояснение его содержания, включает а себя заголовок графика, пояснения масштабных шкал и отдельных элементов графического образа. Заголовок графика в краткой и четкой форме поясняет основное содержание изображаемых данных. Помимо заголовка, на графике дается текст, делающий возможным чтение графика. Цифровые обозначения шкалы дополняются указанием единиц измерения. По содержанию или назначению выделяют: графики сравнения в пространстве, графики различных относительных величин (структуры, динамики и др.), графики вариационных рядов, графики размещения по территории, графики взаимосвязанных показателей и т. д. По способу построения графики разделяют на диаграммы и статистические карты. В зависимости от круга решаемых задач выделяют диаграммы сравнения, структурные диаграммы и диаграммы динамики. Статистические карты - условные изображения статистических данных на контурной географической карте, т. е. показывают пространственное размещение или пространственную распространенность статистических данных Статистические карты по графическому образу делятся на картограммы и картодиаграммы. Картограммы делятся на фоновые и точечные. Среди картодиаграмм выделяют картодиаграммы простого сравнения, графики пространственного перемещения, изолинии. По характеру графического образа различают графики точечные, линейные, плоскостные (столбиковые, полосовые, квадратные, круговые, секторные, фигурные) и объемные.
Правила построения Наиболее простыми и наглядными графиками для сравнения величин одного статистического показателя, характеризующего разные объекты, являются столбиковые и полосовые диаграммы. Их построение требует соблюдения ряда правил.Так, наиболее важным является соответствие столбиков по высоте, а полос по длине отображаемым цифрам. Поэтому, во-первых, нельзя допускать разрыв масштабной шкалы; во-вторых, нельзя начинать масштабную шкалу не от нуля, а от числа, близкого к минимальному в изображаемом ряду. Для построения диаграмм высоты столбиков или длины полос располагают в убывающем или возрастающем порядке. При построении столбиковых диаграмм необходимо начертить систему прямоугольных координат. Основания столбиков одинакового размера размещаются на оси абсцисс, а высота столбика будет соответствовать величине показателя, нанесенного в соответствующем масштабе на ось ординат.Каждый столбик посвящается отдельному объекту. Общее число столбиков равно числу сравниваемых объектов. Расстояние между столбиками берется одинаковое, а иногда столбики располагаются вплотную друг к другу.Столбиковые диаграммы называются полосовыми, если столбики размещаются не по вертикали, а по горизонтали. В этом случае основание полос (объекты) располагается на оси ординат, а масштаб - на оси абсцисс.Таким образом, столбиковые и полосовые диаграммы взаимозаменяемы.При помощи столбиковых и полосовых диаграмм можно изобразить структуру явления и структурные сдвиги. Но чаще всего структура явлений характеризуется секторными диаграммами. Секторная диаграмма представляет собой круг, разделенный радиусами на отдельные секторы, каждый из которых характеризует какую-то часть целого явления и занимает площадь круга пропорционально удельному весу этой части. Наглядность изображения достигается тем, что в круге глаз лучше улавливает удельные веса отдельных частей в целом.. Если же при построении графиков учесть и показатели роста (дать круги по размеру соответственно темпам роста), то можно отразить и динамику явлений.Однако наиболее часто для изображения динамики применяют линейные графики. Их преимущество состоит в том, что динамика изображается в виде непрерывной линии, характеризующей непрерывность процесса.Для построения линейных графиков используют систему прямоугольных координат. На оси абсцисс обычно откладывают периоды, а на оси ординат - показатели, характеризующие динамику.Если на графике изображаются показатели за различные периоды времени, то интервалы между периодами времени (длина отрезков) при нанесении шкалы на ось абсцисс должны быть пропорциональны величинам продолжительности периодов.Линейные графики удобны тем, что на одном графике можно построить несколько кривых (ломаных) по разным показателям.
Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 679; Нарушение авторского права страницы