Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Виды и способы отбора единиц в выборочную совокупность.



Различают:

-повторный,

-бесповтор. отбор,

-собственно случайную выборку,

-механическую,

-серийная,

-комбинированная,

-малую выборку.

соб.-случайн.: м. б. как повторная, так и бесп.

Повт. – соблюдается независимотьс отбора от изучаемых признаков и равная возможность каждой ед-цы попасть в выборку.

Случ.выборка (позволяет дать объективную оц-ку ген.совокупности)- отбор по жребию.Ед-цы нумеруются, перемешиваются, отбираются.

Соб-но случ-ю можно произвести жеребьевкой при больой велечине совокупности.По этому же признаку соб случ. произв-ся с помощюь датчика случ. признаков, при этом в выборку включаются ед-цы с указ.номерами(напр.каждая 10-я). На практике избегают чисел, наход-ся в начале ряда.

Бесповт.выборка- отобр.ед-ца обратноне возвращается, вероятность оставшихся попасть в выюорку все время растет.

Мех.отбор – последоват-й отбор ед-ц через равные промежутки ил опр.интервал.Всегда бесповт.Случ.ош-ка выбки при мех.всегда< чем при соб.случ-м.

Малая выб.- выб. сов-ть сост. из неб-го числа ед-ц(не > 30)

При рассмотрения больших выб-к сущ формулы расчета ср.квад.отклон-я как суммы квад-в отклон-й/n (число ед-ц) сов-ти, то при малой выборки рас-е вероятностей для средней значит-но зависит от числа отбир-х единиц.

Сущ.формулы перерасчета оц-к расхождений между выбор-й средней в малой выборке, когда исп-ся осн.законраспр.(з-н Стьюдета). При выб.наблюдении отбир-ся ед-цы, группы единиц, а далее внутри групп ислед-ся либо все ед., либо также пров-ся выборка.

Типическая- пропоруиональный и непропор. тип.отбор.(из всез групп выбирают пропор-но(непроп.)их численности).

Серийная- отбир.группы(серии)внутри кот.пров.сплошное наблюдение.Точность зависит только от вел-ны дисперсии групп.средних.Бывает повт.и бесп.Серии: равновелики и неравнов.

Комбиниров.выб.- исп-е в процессе 1 наблюдения неск.сп-в выбки(часто – серийн.+случ-я с индивидуальным отбором ед-ц).

Одноступенчатая -отобр-е любым сп-м ед-цы подверг.наблюдению.

Многоступ.- из ген.сов-ти выб.группы, из них – другие(меньше), до тех пор, пока не будут отбораны гр., кот. будут наблюд-ся.

Многофазная- выб.сов-ть образуется так, что ср.опр. у всех ед-ц отбора, отбир. еще ед-цы и обслед-ся по опр. программе.Связана с многоступ-й, т.к. на каж. ступени мож.быть многофаз-й.

 

 

34. Ошибки выборки и методы их расчета по среднему значению выборочного показателя и по доле признака выборочной совокупности.

Ошибки выборки – отношения от фактич.пок-лей сплошного учета. Эти ошибки репрезент-сти при несплошном наблюдении необходимо учитывать и производить поправку данных, распр-мых на всю генер.сов-сть. Объективно возникающие ошибки вырорки появл-ся случ-но и форм-ся под влиянием з-на больших чисел. Вычисляется: а. для повт.отбора: б. для беcповт.: (1-n/N), где n-выбор.сов-сть(сов-сть отобранных единиц), N-ген.сов-сть(сов-сть ед-ц, из кот. произв-ся отбор).

Пред.ошибка выборки пок-ет р-р абсол.ошибки выборки, измеренный по отн-нию к средней. Если р=0, 683, то t=1; p=0, 954, то t=2; p=0, 997, то t=3/ Пред.ошибка выбор. средней: . Границы, в кот. Заключена генер.средняя: . Ген.доля признака: . Отд. Формулы для ср.ошибки доли: а. для повт.отбора: б. для бесповт.:

 

35. Определение необходимой численности (объема) выборки.

Одним из научных принципов в теории выборочного метода является обеспечение достаточного числа отобранных единиц.

Уменьшение стандартной ошибки выборки, а следовательно, увеличение точности оценки всегда связано с увеличением объема выборки, поэтому уже на стадии организации выборочного наблюдения приходится решать вопрос о том, каков должен быть объем выборочной совокупности, чтобы была обеспечена требуемая точность результатов наблюдений.

Вопрос об определении необходимой численности выборки усложняется, если выборочное обследование предполагает изучение нескольких признаков единиц отбора. В этом случае средние уровни каждого из признаков и их вариация, как правило, различны, и поэтому решить вопрос о том, дисперсии какого из признаков отдать предпочтение, возможно лишь с учетом цели и задач обследования.

При проектировании выборочного наблюдения предполагаются заранее заданная величина допустимой ошибки выборки в соответствии с задачами конкретного исследования и вероятность выводов по результатам наблюдения.

В целом формула предельной ошибки выборочной средней величины позволяет определять:

  • величину возможных отклонений показателей генеральной совокупности от показателей выборочной совокупности;
  • необходимую численность выборки, обеспечивающую требуемую точность, при которой пределы возможной ошибки не превысят некоторой заданной величины;
  • вероятность того, что в проведенной выборке ошибка будет иметь заданный предел

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 1027; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь