Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Силы межмолекулярного взаимодействия
Электрически нейтральные атомы и молекулы, валентно-насыщенные, способны к дополнительному взаимодействию друг с другом. Степень такого взаимодействия может быть различной – от рассмотренного выше процесса образования прочных комплексных соединений до совсем слабых сил, проявляющихся при взаимодействии любых частиц на сравнительно больших расстояниях. Очень слабые силы притяжения между нейтральными атомами и молекулами, проявляющиеся на расстояниях, превосходящих размеры частиц, называют межмолекулярным взаимодействием или силами Ван- дер -Ваальса . Они действуют в газообразных и жидких веществах, а также между молекулами в молекулярных кристаллах. Межмолекулярное притяжение определяет возможность перехода вещества в жидкое и твердое агрегатные состояния (с выделением энергии), играет важную роль в процессах адсорбции, катализа, растворения и сольватации. Ван -дер - Ваальсово притяжение имеет электрическую природу и определяется тремя эффектами – ориентационным , индукционным и дисперсионным: Е = Еор. + Еинд. + Едисп.
Ориентационное взаимодействие Об ориентационном эффекте говорят в случае взаимодействия полярных молекул, т.е. диполей. При ориентационном взаимодействии диполи поворачиваются по отношению друг к другу разноименными полюсами, т.е. определенным образом ориентируются в пространстве. Притяжение обусловливается электростатическим взаимодействием полюсов различных диполей, а следовательно, энергия ориентационного взаимодействия тем выше, чем больше электростатический момент диполя и чем меньше расстояние между ними. Следовательно, вклад ориента-ционного взаимодействия в суммарное притяжение особенно велик для молекул с большим дипольным моментом (вода, аммиак и др.). Тепловое движение молекул уменьшает возможность такой ориентации, следовательно, при повышении температуры ориентационное взаимодействие ослабевает.
Индукционное взаимодействие
Индукционное взаимодействие возникает при сближении друг с другом полярной и неполярной молекул и связано с поляризацией неполярной молекулы под воздействием полярной. При этом образуется индуцированный (наведенный) диполь, благодаря которому происходит взаимное притяжение молекул. Подобное явление может наблюдаться и для полярных молекул (дипольный момент увеличивается, и индукционный эффект наклады-вается на ориентационный, вследствие чего возрастает взаимное при-тяжение молекул). Энергия индукционного взаимодействия увеличивается с ростом дипольного момента и поляризуемости, от температуры она не зависит. Индукционный эффект в 10-20 раз меньше ориентационного, и ощутимое влияние индукционного взаимодействия проявляется в случае частиц, обладающих высокой поляризуемостью. Дисперсионное взаимодействие
Дисперсионное взаимодействие проявляется для любых атомов и молекул независимо от их строения, в том числе и для двух неполярных молекул. Вследствие перемещения электронов и колебательного движения атомных ядер в неполярной молекуле возникают мгновенные диполи, между которыми и происходит дисперсионное взаимодействие. Направление диполей постоянно меняется вследствие движения электронов. Электрическое поле таких мгновенных диполей индуцирует мгновенные диполи в других частицах, и движение всех мгновенных диполей становится синхронным. В результате соединение молекулы притягиваются друг к другу, и энергия системы понижается. Дисперсионное взаимодействие универсально (присуще всем частицам), проявляется лишь на очень небольших расстояниях, обладает малой энергией и увеличивается с ростом поляризации молекул. Для реальных молекул проявляются обычно все три вида межмолекулярных взаимодействий.
Водородная связь Промежуточный характер между обычной химической связью и межмолекулярным взаимодействием имеет водородная связь. Водородная связь реализуется между положительно поляризован-ным атомом водорода одной полярной молекулы и отрицательно поляри-зованным атомом неметалла (чаще – фтора, кислорода, азота, реже – хлора, серы) другой молекулы. Подобное взаимодействие не проявляется для других атомов, что обусловлено уникальными свойствами поляризованного атома водорода – его очень малыми размерами и отсутствием внутренних электронных оболочек. Эти особенности атома водорода позволяют партнеру прибли-зиться на столь малое расстояние, которое не может быть достигнуто при взаимодействии с другими частицами. Возникновение водородной связи в очень грубом приближении можно объяснить действием электростатических сил. Так, например, в полярной молекуле фтороводорода общая электронная пара сильно смещена к атому фтора. В результате атом водорода приобретает поло-жительный заряд и может электростатически взаимодействовать с отрицательно заряженным атомом фтора соседней молекулы HF. Вследст-вие своих малых размеров атом водорода (теперь уже почти ион) способен проникнуть в электронную оболочку соседнего атома фтора, вследствие чего и возникает водородная связь: Это «проникновение» свидетельствует о том, что вся полнота картины не может быть описана лишь электростатическим притяжением, в образование водородной связи вносит вклад и донорно-акцепторное взаимодействие. Условием образования водородной связи является высокая электроотрицательность атома, связанного с атомом водорода. Только в таком случае электронное облако достаточно сильно смещается в сторону атома-партнера, и он приобретает высокий отрицательный заряд. Энергия водородной связи невелика: она на порядок меньше энергии обычной ковалентной связи, но много выше энергии межмолекулярных взаимодействий. Несмотря на малую прочность, часто водородная связь определяет внутреннюю структуру вещества и существенно влияет на его физические и химические свойства. Благодаря водородным связям молеку-лы объединяются в димеры и более сложные ассоциаты:
В кристалле льда каждый атом кислорода тетраэдрически связан с четырьмя атомами водорода: с двумя – полярной ковалентной связью, а с двумя другими – водородной связью. В свою очередь, каждый атом водорода связан двумя различными связями с двумя атомами кислорода. Способностью к ассоциации обладают молекулы аммиака, спиртов, пероксида водорода, ряда кислот и др. Это приводит к повышению температур плавления и кипения, изменению взаимной растворимости. Ведь водородные связи могут образовываться и между двумя различными молекулами, например: Так, смешение спиртов с водой сопровождается разогреванием и уменьшением объема, что объясняют образованием водородных связей:
Водородная связь влияет и на химические свойства веществ. Например, НF – слабая кислота, в отличие от других галогеноводородных кислот диссоциация HF на ионы осложнена способностью ее к образованию дифторид-иона и других, более сложных частиц. Эти частицы столь прочны, что выделены кислые соли фтороводородной кислоты, например, KHF2. Кроме межмолекулярной, встречается и внутримолекулярная водородная связь, например:
Таким образом, убедившись в разнообразии типов химической связи, причина образования которой во всех случаях электростатическая, следует выяснить вопрос: почему число связей, образуемых атомом одного элемента, переменно, и от каких факторов это число зависит, чем определяется. Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 2049; Нарушение авторского права страницы