Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Потенциал электростатического поля. Работа, совершаемая силами электростатического поля при перемещении в нём электрического заряда



 

Работа , совершаемая кулоновскими силами при малом перемещении точечного заряда q в электростатическом поле:

,

где - напряжённость поля в месте нахождения заряда q. Работа кулоновской силы при перемещении заряда q из точки 1 в точку 2 не зависит от формы траектории движения заряда (т.е. кулоновские силы являются консервативными силами). Работа сил электростатического поля при перемещении заряда q вдоль любого замкнутого контура L равна нулю. Это можно записать в виде теоремы о циркуляции вектора напряженности электростатического поля.

Циркуляция вектора напряженности электростатического поля равна нулю:

 

.

Это соотношение, выражающее потенциальный характер электростатического поля, справедливо как в вакууме, так и в веществе.

Работа , совершаемая силами электростатического поля при малом перемещении точечного заряда q в электростатическом поле, равна убыли потенциальной энергии этого заряда в поле:

dА= - dWП и А12= - DWП = WП1 - WП2,

где WП1 и WП2 - значения потенциальной энергии заряда q в точках 1 и 2 поля. Энергетической характеристикой электростатического поля служит его потенциал.

Потенциалом электростатического поля называется скалярная физическая величина j, равная потенциальной энергии WП положительного единичного точечного заряда, помещённого в рассматриваемую точку поля, В.

.

Потенциал поля точечного заряда q в вакууме

.

Принцип суперпозиции для потенциала

,

т.е. при наложении электростатических полей их потенциалы складываются алгебраически.

 

Потенциал поля электрического диполя в точке С (рис. 1.2)

.

Если заряды распределены в пространстве непрерывно, то потенциал j их поля в вакууме:

.

Интегрирование проводится по всем зарядам, образующим рассматриваемую систему.

Работа А12, совершаемая силами электростатического поля при перемещении точечного заряда q из точки 1 поля (потенциал j1) в точку 2 (потенциал j2):

А12 = q (j1 - j2).

Если j2 = 0, то .

Потенциал какой-либо точки электростатического поля численно равен работе, совершаемой силами поля при перемещении положительного единичного заряда из данной точки в точку поля, где потенциал принят равным нулю.

При изучении электростатических полей в каких-либо точках важны разности, а не абсолютные значения потенциалов в этих точках. Поэтому выбор точки с нулевым потенциалом определяется только удобством решения данной задачи. Связь между потенциалом и напряжённостью имеет вид

Ех = , Еу = , Еz = и ,

т.е. напряжённость электростатического поля равна по модулю и противоположна по направлению градиенту потенциала.

Геометрическое место точек электростатического поля, в которых значения потенциалов одинаковы, называется эквипотенциальной поверхностью. Если вектор направлен по касательной к эквипотенциальной поверхности, то и . Это означает, что вектор напряженности перпендикулярен эквипотенциальной поверхности в каждой точке, т.е. E = En.

Примеры применения теоремы Гаусса к расчёту электростатических полей

Поле заряда q, равномерно распределённого по поверхности сферы радиусом R с поверхностной плотностью выражается формулами:

если r > R, то = q и Е r = .

если r < R, то = 0 и Е r = 0.

Из связи между потенциалом и напряжённостью поля следует, что . Полагая j =0 при r®¥ , получим для потенциала поля вне сферы (r³ R):

.

Внутри сферы (r< R) потенциал всюду одинаков:

j = sR/e0.

Графики зависимостей E r и j от r приведены на рис. 1.4.

Поле заряда q, равномерно распределённого в вакууме по объёму шара радиусом R с объёмной плотностью выражается формулами:

если r> R, то = q и ;

если r< R, то

и .

Из связи j и следует, что для r> R ,

для r< R j = j(R) - и .

Графики зависимостей Е r и j от r приведены на рис. 1.5.

Поле заряда, равномерно распределенного в вакууме по плоскости с поверхностной плотностью s.

Эта плоскость (х=0) является плоскостью симметрии поля, вектор напряжённости которого направлен перпендикулярно плоскости от неё (если s> 0) или к ней (если s < 0).

Для всех точек поля

.

Так как , и полагая потенциал поля равным нулю в точках заряженной плоскости (х = 0), получим

.

Графики зависимостей Е и j от x приведены на рис. 1.6.


Поделиться:



Популярное:

  1. A. Оказание помощи при различных травмах и повреждениях.
  2. A. особая форма восприятия и познания другого человека, основанная на формировании по отношению к нему устойчивого позитивного чувства
  3. B. Принципы единогласия и компенсации
  4. B12- ФОЛИЕВОДЕФИЦИТНАЯ АНЕМИЯ
  5. CSS в отдельном внешнем файле.
  6. Cочетания кнопок при наборе текста
  7. D-технология построения чертежа. Типовые объемные тела: призма, цилиндр, конус, сфера, тор, клин. Построение тел выдавливанием и вращением. Разрезы, сечения.
  8. EP 3302 Экономика предприятия
  9. Exercise 5: Образуйте сравнительные степени прилагательных.
  10. H. Приглаживание волос, одергивание одежды и другие подобные жесты
  11. I. «Движение при закрытой автоблокировке (по путевой записке).
  12. I. Если глагол в главном предложении имеет форму настоящего или будущего времени, то в придаточном предложении может употребляться любое время, которое требуется по смыслу.


Последнее изменение этой страницы: 2017-03-08; Просмотров: 519; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь