Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Решение систем линейных уравнений методом Гаусса (последовательного исключения неизвестных)
Сначала систематизируем знания о системах линейных уравнений. Система линейных уравнений может: 1) Иметь единственное решение. Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Рассмотрим простейшую систему уравнений и решим ее методом Гаусса. На первом этапе нужно записать расширенную матрицу системы: Справка: Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей. После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями. Существуют следующие элементарные преобразования: 1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки: 2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: . 3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить. 4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля. Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы. 5) К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля. Рассмотрим нашу матрицу из практического примера: . Умножаем первую строку на -2: , и ко второй строке прибавляем первую строку, умноженную на –2: . Теперь первую строку можно разделить «обратно» на –2: . Строка, которую ПРИБАВЛЯЛИ – не изменилась. Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ. На практике так подробно, конечно, не расписывают, а пишут короче: «Переписываю матрицу и переписываю первую строку: » «Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0. Записываю результат во вторую строку: » «Теперь второй столбец. Вверху –1 умножаю на –2: . Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку: » «И третий столбец. Вверху –5 умножаю на –2: . Ко второй строке прибавляю первую: –7 + 10 = 3. Записываю результат во вторую строку: »
Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду: (1) Ко второй строке прибавили первую строку, умноженную на –2. Кстати, почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке. (2) Делим вторую строку на 3. Цель элементарных преобразований – привести матрицу к ступенчатому виду: . В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид. В результате элементарных преобразований получена эквивалентная исходной система уравнений:
Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса. В нижнем уравнении у нас уже готовый результат: . Рассмотрим первое уравнение системы и подставим в него уже известное значение «игрек»: Ответ: Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными. Пример. Решить методом Гаусса систему уравнений: Запишем расширенную матрицу системы: Результат, к которому мы придём в ходе решения: В третьем уравнении у нас уже готовый результат: Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом: И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым: Ответ: Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 536; Нарушение авторского права страницы