Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Кинематика вращательного движения материальной точки
Основные понятия Вращательное движение – движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Период – время, за которое материальная точка совершает полный оборот. Частота – число оборотов, совершаемых материальной точкой в единицу времени. Угловая скорость – первая производная угла поворота по времени. Круговая (циклическая) частота – не изменяющаяся с течением времени угловая скорость . Угловое ускорение – первая производная угловой скорости по времени или вторая производная угла поворота по времени.
Примеры решения задач Задача 1.6 Диск радиусом 5 см вращается вокруг неподвижной оси так, что . Определить для точек на ободе диска к концу первой секунды после начала движения полное ускорение, число оборотов, сделанных диском.
Угловое ускорение – это первая производная угловой скорости по времени, т.е. , тогда . Угол поворота материальной точки относительно неподвижной оси . Угловая скорость связана с углом поворота соотношением , отсюда
Найдем число оборотов, сделанных материальной точкой за 1 с: Ответ: Задача 1.7 Линейная скорость точек на окружности вращающегося диска равна 3 м/с. Точки, расположенные на 10 см ближе к оси, имеют линейную скорость 2 м/с. Определить частоту вращения диска.
Для всех точек твердого тела, вращающегося относительно неподвижной оси, угловая скорость будет одинаковой, т.е. (2) Угловая и линейная скорости связаны формулой: , тогда . Угловые скорости точек, лежащих на ободе диска, и на расстоянии ближе к оси, могут быть выражены в виде: Принимая условие (2), запишем Решаем данное уравнение относительно R:
Угловая скорость . Тогда по формуле (1) число оборотов в единицу времени . Подставляем значения: Ответ: Задача 1.8 Маховик начал вращаться равноускоренно и за 10 секунд достиг частоты вращения 300 . Определить угловое ускорение маховика и число оборотов, которое он сделал за это время.
Число оборотов, сделанных телом при вращении, связано с углом поворота формулой: . (2) Приравнивая формулы (1) и (2), получаем выражение для нахождения числа оборотов, сделанных маховиком. . (3)
Запишем уравнение зависимости угловой скорости от времени: . С учетом условия и связи угловой скорости с частой вращения тела , получаем формулу , откуда выражаем угловое ускорение . (4) Подставляем формулу (4) в (3): . С учетом исходных данных, получаем ; . Ответ: Задачи для самостоятельного решения 1. Шкив диаметром 20 см делает 300 оборотов за 3 минуты. Определить период вращения, угловую и линейную скорости точки на ободе шкива (0, 6 с; 10, 5 рад/с; 1, 05 м/с). 2. Материальная точка массой 20 г движется по окружности радиусом 10 см с постоянным тангенциальным ускорением. К концу пятого оборота после начала движения кинетическая энергия материальной точки оказалась равной 6, 3 мДж. Определить тангенциальное ускорение . 3. Якорь электродвигателя, имеющий частоту вращения 50 оборотов в секунду, после выключения тока, сделав 500 оборотов, остановился. Определить угловое ускорение якоря . 4. Колесо автомобиля вращается равнозамедленно. За 2 минуты оно изменило частоту вращения от 240 до 60 . Определите угловое ускорение колеса; число полных оборотов, сделанных колесом за это время (0, 157 ; 300). 5. Диск радиусом 10 см вращается так, что зависимость угла поворота радиуса диска от времени задается уравнением . Определите для точек на ободе колеса нормальное ускорение через 2 секунды после начала вращения; тангенциальное ускорение для этого же момента времени; угол поворота, при котором полное ускорение составляет с радиусом колеса угол 45о (230 ; 4, 8 ; 2, 67 рад). Контрольные вопросы 1. Чему равно отношение линейной и угловой скоростей, если материальная точка движется по окружности? 2. Чему равно произведение периода вращения материальной точки на частоту вращения? 3. Часы каждые сутки отстают на 2 минуты. Чему равно угловое ускорение минутной стрелки? Глава 2 Популярное:
|
Последнее изменение этой страницы: 2016-04-09; Просмотров: 2340; Нарушение авторского права страницы