Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Лекция 6. Аварийно-спасательный инструмент с гидроприводом



 

При тушении пожаров возможны ситуации, когда для выполнения боевых действий по вскрытию конструкций потребуются средства более мощные, чем для проведения первоочередных аварийно-спасательных работ. К таким средствам относится в механизированный инструмент, который можно разделить на две группы.

Первую группу составляют электропилы и электродолбежники. К ней также относят автогенорезательные установки, пневмодомкраты резино-кордовые и т.д. Ими комплектуют специальные ПА различного назначения.

Вторая группа включает АСИ с гидроприводом. Инструментами этой группы комплектуют как специальные ПА, так и автоцистерны и автонасосы.

Комплект АСИ включает источники энергии, блок управления и набор инструментов с высокими параметрами силовых характеристик.

Источники энергии представляют собой насосные станции с механическим приводом или поршневые насосы с ручным приводом.

Насосные станции предназначены для нагнетания рабочей жидкости в гидравлические системы АСИ. В качестве рабочей жидкости используется масло МГЕ-10А.

Современные насосные станции осуществляют подачу рабочей жидкости поршневыми насосами. Их приводами могут быть бензиновые двигатели внутреннего сгорания или электродвигатели, работающие от сети переменного тока с частотой 50 Гц и напряжении 220 В.

Насосные станции бывают одно- и двухпостовые, обеспечивающие работу одного или двух инструментов одновременно.

При относительно небольших размерах (площади 0, 1…0, 2 м2 и высота до 0, 5 м) станции имеют относительно малые массы (см. табл.), поэтому их можно подносить близко к месту работы. Некоторые параметры технических характеристик насосных станций представлены в табл.1.6.

Таблица 1.6

 

Показатели Размерность Средние значения «Эконт» Пожоборонпром Вебер-гидравлика Австрия
Рабочее давление МПа 25…80
Подача станции л/мин 0, 25…1, 1 0, 89 -
Мощность двигателя* кВт
Масса станции кг
Вместимость масляного бака л 1, 5…15

 

Примечание. В этой таблице и дальше указаны средние значения параметров характеристик насосных станций и инструмента, имеющихся на рынке.

В знаменателях указаны параметры для двухпостовых станций.

Ручные насосы предназначены для подачи рабочей жидкости в гидравлические системы АСИ и другие малогабаритные механизмы с высокими характеристиками.

Ручные насосы используются там, где применение насосных станций нерентабельно или работа с ними опасна по технике безопасности. Они обычно двухступенчатые и развивают давление 80 МПа. В зависимости от параметра давления их масса находится в пределах 4, 5…16 кг, а объем бака от 0, 7 до 2, 5 л.

ООО «Пожоборонпром» (Эконт) производит насосы гидравлические РН80 с размерами 740х200х170 мм и давлением 7, 5/80 МПа. Насос подает масло от 0, 8…2, 5 см3 за один ход. Усилие на рукоятке не превышает 300 Н. Организация «Спрут» поставляет в МЧС России насос ручной НРС-12/80 с размерами 610х160х155 мм.

Рукава высокого давления РДВ армированные предназначены для использования как гибкие трубопроводы для подачи рабочей жидкости от насосной станции в гидроинструмент. Они имеют условный проход 6 мм, рассчитаны на рабочее давление 80 МПа (разрушающее давление не менее 190 МПа). Длина до 20 м.

Блок управления гидроинструментом включает (рис.1.17) гидрораспределитель 1, гидрозамки 2 и 4. Переключением гидрораспределителя осуществляется подвод жидкости в поршневую полость цилиндра и отвод из штоковой полости и наоборот.

Гидрозамки обеспечивают запирание масла в рабочих полостях гидроцилиндра при прекращении ее подачи, а также отвод ее из них.

Принцип работы блока управления рассмотрим на примере подачи жидкости (масла) в поршневую полость гидроцилиндра 1. Для этого ручку f поворачивают так, чтобы совпали индексы a, b, c и d средней и верхней частей. Тогда, масло из насосной станции поступит к a – b – k и через обратный клапан гидрозамка 2 в поршневую полость гидроцилиндра 3. Поршень и шток будут перемещать влево.

Одновременно по каналу k – l масло поступит в гидрозамок 4 и совместит индексы m и n, переместив стрелку вниз. Тогда, масло из поршневой полости гидроцилиндра поступит к m – n, а затем c – d и в насосную станцию.

Для перемещения поршня гидроцилиндра в правую часть необходимо рукояткой f перевести среднюю часть гидрораспределителя 1 в нижнее положение.

Гидрозамками оснащается только гидравлический инструмент, предназначенный для силового подъема тяжестей или их разжима.

Аварийно-спасательный инструмент, рекомендованный для комплектования ПА различного назначения можно разделить на две группы. Первую из них составляют инструменты для резания металлических материалов различного профиля: прутья, уголки, троссы, листовой материал. Ко второй группе относятся различные устройства для раздвигания или подъема элементов разрушенных конструкций, расширения проемов, узких проходов и т.д.

Инструмент для резания металлов охватывает такие устройства, как резаки, ножницы, кусачки.

Его называют центрально-осевым, так как разжим и последующее сжатие рычагов (челюстей) 7 происходит при их повороте на шарнире 9, закрепленномна кронштейне 4.

Инструмент на рисунке находится в исходном состоянии. При подаче масла в штоковую полость цилиндра (показано стрелкой) поршень 2, перемещаясь вправо сместит шарнир 9 из положения “а” в положение “б”, а концы “с” рычагов 7 займут положение с' и ". Совершится первый цикл работы инструмента. При подаче масла в поршневую полость цилиндра поршень 2 будет перемещаться влево и рычаги (челюсти), сжимаясь будут разрезать (деформировать) металлические изделия, заложенное между ними.

Первый цикл работы может быть использован для разжима (перемещения) элементов конструкций. В этом случае инструмент будет комбинированным: перемещение в первом цикле работы, резание – во втором цикле.

Инструмент для перемещения материалов или изделий охватывает такие изделия, как разжимы, расширители, домкраты и др.

Принципиальная схема устройства и работы механизмов этого типа инструментов представлена на рис.1.19. Инструменты этого типа называют нецентрально-осевыми, так как опоры гарниров 6, вокруг которых поворачиваются челюсти 8, закреплены на двух кронштейнах 4.

Инструмент находится в исходном состоянии. При подаче масла в поршневую полость цилиндра 1 шток 2 будет перемещаться влево. При этом шарнир 9 переместится в положение 9', а шарнир 7 в положение 7". Вследствие этого концы “а” челюстей 8 займут положение а' и а". Величина S будет характеризовать их раскрытие. Этим завершается первый цикл работы инструмента. Второй цикл работы заключается в сжатии челюстей. Для этого масло следует подавать в штоковую полость цилиндра 1.

Классификация АСИ и параметры его технических характеристик определяют его назначение и область применения. На основании рассмотренных принципиальных схем создан комплект инструмента различного назначения.

Основные интервалы параметров технических характеристик АСИ приведены в табл.1.7.

Все инструменты в основном работают при давлении 65…80 МПа. Некоторые из них имеют особенности конструкций. Так, цилиндр двухштоковый представляет собой два гидравлические цилиндра между поршневыми полостями, в которых смонтирован блок управления, состоящий из гидрозамка и гидрораспределителя.

Оба типа гидроцилиндров снабжаются комплектом приспособлений для стягивания элементов конструкций. В комплект входят захваты, крюки, цепи.

Домкрат ДМ-90, выпускаемый Эконтом, двухступенчатый телескопический, оборудован специальной тянущей пружиной, обеспечивающей возвращение подвижных его частей в исходное состояние. Аналогичное устройство имеют и кусачки.

Гидроинструмент требует минимального ухода. Необходимо предотвращать попадание в масло влаги и абразива, а также периодически его заменять.

 

Таблица 1.7

Наименование инструмента Эс-киз Параметры
масса перекусывае-мый пруток раскрытие рычагов усилие пружины удель-ная работа
кг мм мм кН кДж/кг
Ножницы челюстные 9…15, 5 20…32 45…185 - -
Резак троссовый 3, 5…15, 8 25…70 - - -
Кусачки   9, 5 до 32 - - -
Разжим-ножницы 11…16 25…32 200…360 24…64 0, 4…1, 6
Резак комби нированный 10, 8…16 5…10* 115…185 13…40 0, 14…0, 7
Расширитель   15, 5…34 - 500…830 43…200 12…50
Домкрат   1, 5…45 - 35…104 50…2400 97…5, 9
Цилиндр** одноштоко-вый 4, 5…18, 5 - 200…500 58…230/ 25…60 1, 5…3, 6/0, 7…2
Цилиндр двухштоко-вый 9, 5…2 - 400…800 50…230/ 25…130 -/ 1, 2…2, 7

Примечание: * указана толщина перерезаемого листа.

** указаны усилия толкающие и тянущие.

 

Номенклатура (перечень) ПТВ, возимого на АЦ, включает более 50 наименований различных приспособлений и устройств. На других ПА, например, автомобилях специального применения, перечень ПТВ значительно меньше.

ПТВ на пожарных автомобилях используется крайне неравномерно. Частота его применения на АЦ изменяются в очень широких пределах. Так, пожарные насосы включаются в работу на всех пожарах. Рукава всасывающие, в зависимости от их диаметра и развития водопроводной сети в городах, используются на 4…10%. всех пожаров. Пожарные напорные рукава диаметром 51 мм применяют на 80% пожаров, а диаметром 77 мм – только на 20% пожаров; а, например. Гидроэлеватор – только на 1, 1% всех случаев тушения пожаров.

Различные образцы ПТВ различаются по массе, размерам и занимаемым ими объемам. Так, масса комплекта пожарных рукавов на АЦ-40(131)137 составляет 270 кг, а объем занимаемой ими равен 35…40% объема отсеков. Масса колонки пожарной равна 18 кг, а габаритные размеры находятся в пределах 430х190х1090 мм, пеносмесители различного типа имеют массу 4, 6…6 кг при длине 420…520 мм, стволы различного назначения при длине до 450 мм имеют массу до 2 кг и т.д. общая масса возимого и снимаемого с ПА пожарно-технического вооружения находятся в пределах 500…700 кг.

Например, на АЦ-40(131)153 в правых отсеках масса ПТВ была равна 250 кг, в левых – 200 кг и на крыше – 300 кг. Такое же распределение по массе реализовано на АЦ, сооруженное на шасси Урал-5556.

Размещение ПТВ должно удовлетворять ряду требований: способствовать минимальному времени боевого развертывания ПА, не снижать его оперативной подвижности, его крепление, как и размещение должно быть травмобезопасным.

Для реализации изложенных требований размещение ПТВ в отсеках ПА должно подчиняться принципу эргономики, согласно которому «… оборудование, органы управления и приборы должны располагаться в соответствии с логикой деятельности человека».

При размещении ПТВ в отсеках АЦ следует учитывать возможности:

– группировки элементов ПТВ по их функциональному назначению;

– значимости, на сколько оно важно для выполнения определенной группы операций;

– оптимального размещения по конфигурации ПТВ, его массы, геометрических размеров;

– последовательного использования, согласно которому оно используется при организации работы;

– частоты использования; в соответствии, с чем элементы, наиболее часто используемые, должны находиться в самых удобных местах;

– рациональной доступности оборудования для пожарных различного роста.

Эти принципы (или возможности) трудно согласовать между собой. Поэтому при разработке схемы размещения ПТВ на АЦ должен быть разумный компромисс.

Обеспечение оптимальной оперативной подвижности и безопасного движения ПА необходимо массу пожарной надстройки (25% от общей массы ПА), включающей и ПТВ, размещать так, чтобы выполнялись два условия. Прежде всего необходимо, чтобы нагрузка на управляемую ось составляла не менее 25% от полной массы ПА. Кроме того, необходимо, чтобы нагрузки на колеса правого и левого бортов должны быть равными с отклонением ±1%.

Учитывая влияние ПТВ на технические возможности ПА запрещается самовольное, необоснованное переукомплектование ПТВ пожарных автомобилей и изменение его размещения в них.

 


Л и т е р а т у р а:

1. Боевой устав пожарной охраны. – М.: МВД Российской Федерации, 1996. – 46 с.

2. Наставление по технической службе. – М. – МВД Российской Федерации, 1996. – 170 с.

3. Средства обеспечения аварийно-спасательных работ. Вып.4. – М.: ВНИИПО МВД РФ, 1999. – 148 с.

4. Нормы пожарной безопасности. ВНИИПО, утвержденные приказом ГУГПС МВД РФ, 1996. – 2000.

5. Брушлинский Н.Н. Моделирование оперативной деятельности пожарной службы. – М.: Стройиздат, 1989. – 96 с.

6. Безбородько М.Д. и др. Пожарная техника. – М.: ВИПТШ МВД СССР, 1989. – 236 с.

7. Яковенко Ю.Ф., Зайцев А.И. и др. Эксплуатация пожарной техники. – М.: Стройиздат, 1991. – 414 с.

8. Волков В.Д., Ерохин С.П. и др. Справочное пособие по работе на специальных пожарных автомобилях. – М.: ВНИИПО, 1999. – 236 с.

9. Безбородько М.Д., Брежнев А.А. и др. Охрана труда пожарных. Современные требования. – М.: Стройиздат, 1993. – 184 с.

10. Технические описания и инструкции по эксплуатации пожарной техники: ОАО «Пожтехника» г.Торжок; АМО ЗИЛ г.Москва; Варгашинского завода противопожарного и специального оборудования, г.Варгаши.

11. Яковенко Ю.Ф., Кузнецов Ю.С. Техническая диагностика пожарных автомобилей. – М.: Стройиздат, 1984. – 288 с.

12. Техническая эксплуатация автомобилей // Под ред. д.т.н., профессора Кузнецова Ю.С.. – М.: Транспорт, 2000. - с.

 


Лекция 7. Основные определения и классификация насосов

Из всего многообразия пожарно-технического вооружения насосы представляют наиболее важный и сложный их вид. В машинах пожарных автомобилей различного назначения используется широкая номенклатура насосов, работающих по различным принципам. Они, прежде всего, обеспечивают подачу воды на тушение пожаров. Они полностью обеспечивают работу таких сложных механизмов, как автолестницы и коленчатые подъемники. Они же применяются во многих вспомогательных системах, таких как вакуумные системы, гидроэлеваторы и др. Глубокое знание не только их устройства, но и рабочих характеристик, особенностей режимов их работы обеспечивают эффективное их применение для тушения пожаров.

Первое упоминание о насосах относится к III-IV векам до нашей эры. В это время грек Ктесибий предложил поршневой насос. Однако точно не известно использовался ли он для тушения пожаров.

Изготовление поршневых пожарных насосов с ручным приводом осуществлялось в XVIII веке. Пожарные насосы с приводом от паровых машин производились в России уже в 1893 г.

Идея использовать центробежные силы для перекачки воды была высказана Леонардо да Винчи (1452-1519 гг.), теория же центробежного насоса была обоснована членом Российской Академии наук Леонардом Эйлером (1707…1783 гг.).

Создание центробежных насосов интенсивно развивалось во второй половине XIX века. В России разработкой центробежных насосов и вентиляторов занимался инженер Саблуков А.А. (1703…1857 гг.) и уже в 1840 г. им был разработан центробежный насос. В 1882 г. был произведен образец центробежного насоса для Всероссийской промышленной выставки. Он подавал 406 ведер воды в минуту.

В создание отечественных гидравлических машин и, в том числе насосов, большой вклад внесли советские ученые И.И.Куколевский, С.С.Руднев, А.М.Караваев и др.

Пожарные центробежные насосы отечественного производства устанавливались на первых пожарных автомобилях (ПМЗ-1, ПМГ-1 и др.) уже в 30-х годах прошлого столетия.

Исследования в области пожарных насосов на протяжении многих лет проводились во ВНИИПО и ВИПТШ.

В настоящее время на пожарных машинах применяются насосы различных типов (рис.2.1.). Они обеспечивают подачу огнетушащих веществ, функционирование вакуумных систем, работу гидравлических систем управления.

Работа всех насосов с механическим приводом характеризуется двумя процессами: всасывания и нагнетания перекачиваемой жидкости. При этом насос любого типа характеризуется величиной подачи жидкости, развиваемой напором, высотой всасывания и величиной коэффициента полезного действия.

Подачей насоса называется объем жидкости, перекачиваемой в единицу времени и измеряется в л/с (Q, л/с). Напором насоса называется разность удельных энергий жидкости после и до насоса. Его величину выражают в метрах водяного столба (Н, м). Для определения сущности определения напора рассмотрим схему работы насосной установки (рис.2.2.). На основании уравнения Бернулли запишем

 

2 - ℮ 1 = (z2 – z1) + (2.1)

где: 2 и 1 - энергия на входе и выходе из насоса; Р2 и Р1 - давление жидкости в напорной и всасывающей полости, Па; ρ - плотность жидкости, кг/м3; υ 2 и υ 1- скорость жидкости на выходе и входе в насос, м/с; g - ускорение свободного падения, м/с. Разность z2 и z1, а также невелики, поэтому для практических расчетов ими пренебрегают.

Значения и - показания манометра Нман и вакуумметра Нвак на насосе выразим в метрах водяного столба

 

и (2.2)

 

На основании изложенного напор Н насоса приближенно оценивают как сумму

 

Н = Нман + Нвак (2.3)

 

В этой формуле знак «плюс» ставят, если во всасывающей полости вакуум, т.е. при работе с открытого водоисточника. В случае забора воды из водопроводной сети или при работе последовательно включенных насосов ставят знак «минус».

В соответствии с рис.2.2 напор, развиваемый насосом Н, должен обеспечить подъем воды на высоту Нг, преодолеть сопротивления во всасывающей hвс и напорной линии hн и обеспечить требуемый напор на стволе Нств. Тогда можно записать

 

Н = Нг + hвс + hн + Нств (2.4)

 

Потери во всасывающей и напорной линиях определяют

 

hвс = Sвс · Q2 и hн = Sн· Q2 (2.5)

 

где: Sвс и Sн - коэффициенты сопротивлений линий всасывания и нагнетания.

На практике используют понятие «напор на насосе» – это манометрический напор. Он равен

 

Нман = Нпод + hн + Нств (2.6)

 

Эффективная мощность насоса идет на совершение работы по перемещению определенного объема жидкости с плотностью ρ на высоту Н, м

 

Ne = ρ gQH, Вт (2.7)

 

Мощность, потребляемая насосом, равна

 

(2.8)

 

Полный η насоса определяют по формуле

 

η = η о · η г · η м (2.9)

 

где: η о , η г и η м - КПД объемный, гидравлический и механический.

 

Центробежные насосы обладают рядом крупных достоинств. При постоянной скорости вала насоса nном об/мин, изменяя подачу Q л/с в широких пределах (до 10 раз), напор Нм, развиваемый им, изменяется на 10…15%. Следовательно, напор при изменении подачи всегда будет достаточно высоким. Центробежные насосы подают жидкость равномерно без пульсаций. Важным является и то, что они способны работать «на себя». При перекрытии ствола, засорении его или заломе напорных рукавов насос не выключатся.

Центробежные насосы не требуют сложного привода от двигателя, надежны в работе и просты в управлении. Существенным их недостатком является то, что они не могут забирать воду из открытых водоисточников. Поэтому их оборудуют специальными вакуумными системами с ручным или автоматическим включением.

К центробежным насосам для целей пожаротушения предъявляется ряд специфических требований. Они должны обеспечивать подачу воды и водных растворов пенообразователя с водородным показателем рН от 7 до 10, плотностью 1010 кг/м3 и массовой концентрацией твердых частиц до 0, 5% при их максимальном размере 3 мм. Насос может потреблять не более 70% мощности, развиваемой двигателем шасси, и обеспечивать работу непрерывно в течение 6 часов при любых температурах окружающей среды.

Струйные и объемные насосы, применяемые на пожарных автомобилях, должны обеспечивать надежную и эффективную работу основных агрегатов во всем диапазоне условий эксплуатации. Они должны быть просты в управлении и обслуживании.

 


Л и т е р а т у р а:

1. Боевой устав пожарной охраны. – М.: МВД Российской Федерации, 1996. – 46 с.

2. Наставление по технической службе. – М. – МВД Российской Федерации, 1996. – 170 с.

3. Средства обеспечения аварийно-спасательных работ. Вып.4. – М.: ВНИИПО МВД РФ, 1999. – 148 с.

4. Нормы пожарной безопасности. ВНИИПО, утвержденные приказом ГУГПС МВД РФ, 1996. – 2000.

5. Брушлинский Н.Н. Моделирование оперативной деятельности пожарной службы. – М.: Стройиздат, 1989. – 96 с.

6. Безбородько М.Д. и др. Пожарная техника. – М.: ВИПТШ МВД СССР, 1989. – 236 с.

7. Яковенко Ю.Ф., Зайцев А.И. и др. Эксплуатация пожарной техники. – М.: Стройиздат, 1991. – 414 с.

8. Волков В.Д., Ерохин С.П. и др. Справочное пособие по работе на специальных пожарных автомобилях. – М.: ВНИИПО, 1999. – 236 с.

9. Безбородько М.Д., Брежнев А.А. и др. Охрана труда пожарных. Современные требования. – М.: Стройиздат, 1993. – 184 с.

10. Технические описания и инструкции по эксплуатации пожарной техники: ОАО «Пожтехника» г.Торжок; АМО ЗИЛ г.Москва; Варгашинского завода противопожарного и специального оборудования, г.Варгаши.

11. Яковенко Ю.Ф., Кузнецов Ю.С. Техническая диагностика пожарных автомобилей. – М.: Стройиздат, 1984. – 288 с.

12. Техническая эксплуатация автомобилей // Под ред. д.т.н., профессора Кузнецова Ю.С.. – М.: Транспорт, 2000. - с.

 


Поделиться:



Популярное:

  1. IX. ДАННЫЕ ЛАБОРАТОРНЫХ, ИНСТРУМЕНТАЛЬНЫХ МЕТОДОВ ИССЛЕДОВАНИЯ И КОНСУЛЬТАЦИИ СПЕЦИАЛИСТОВ
  2. XI. ПОСТРОЕНИЕ И ПРОЦЕСС ПСИХОДРАМЫ. КОНСТИТУЕНТЫ (ИНСТРУМЕНТЫ); ФАЗЫ И ФОРМЫ
  3. А. Управление источниками финансирования на предприятии. Традиционные и новые методы и инструменты финансирования
  4. Аварийно-спасательный инструмент
  5. Базовый диагностический инструментарий для изучения особенностей познавательной сферы в дошкольном возрасте.
  6. Безопасность при работе в смотровой канаве (каска, электроинструмент, кто может находится в смотровой канаве).
  7. Глава 3. Заговор и инструменты.
  8. Глава 4. Классификация BTL-инструментов
  9. Государственное регулирование экономики: необходимость, цели, методы и инструменты, границы.
  10. Диагностический инструментарий
  11. ЗАХВАТЫВАЮЩИЕ (ЗАЖИМНЫЕ) ИНСТРУМЕНТЫ
  12. Значение зеркального переноса как инструмента процесса переработки


Последнее изменение этой страницы: 2016-04-11; Просмотров: 1677; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.059 с.)
Главная | Случайная страница | Обратная связь